Comptes Rendus
Interactive virtual prototyping of a mechanical system considering the environment effect. Part 2: Simulation quality
Comptes Rendus. Mécanique, Volume 339 (2011) no. 9, pp. 605-615.

Perhaps the three most important issues in numerical simulation of mechanical systems are: (1) how well do the multi-body systems represent a physical system of interest; (2) how efficient is the simulation; and (3) how accurate is the simulation. With the advances in computational mechanics, the efficiency of multi-body simulations is steadily improving. Indeed, analysts are increasingly envisioning real-time simulation. With these improvements in computation and efficiency, the modeling of physical systems is also improving through the ability to have more comprehensive modeling. The issue of accuracy, however, remains. Generally, the complexity of multi-body system dynamics leaves the analyst without firm assurance about the numerical accuracy short of experimental verification or intuitive reasonableness of the results. In the second part of the paper we present some methods and experiments to clarify simulation quality of the basic model described in the first article.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crme.2011.06.003
Mots clés : Dynamical systems, Multi-body, Stability, Accuracy, Interactivity
Zheng Wang 1

1 Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
@article{CRMECA_2011__339_9_605_0,
     author = {Zheng Wang},
     title = {Interactive virtual prototyping of a mechanical system considering the environment effect. {Part} 2: {Simulation} quality},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {605--615},
     publisher = {Elsevier},
     volume = {339},
     number = {9},
     year = {2011},
     doi = {10.1016/j.crme.2011.06.003},
     language = {en},
}
TY  - JOUR
AU  - Zheng Wang
TI  - Interactive virtual prototyping of a mechanical system considering the environment effect. Part 2: Simulation quality
JO  - Comptes Rendus. Mécanique
PY  - 2011
SP  - 605
EP  - 615
VL  - 339
IS  - 9
PB  - Elsevier
DO  - 10.1016/j.crme.2011.06.003
LA  - en
ID  - CRMECA_2011__339_9_605_0
ER  - 
%0 Journal Article
%A Zheng Wang
%T Interactive virtual prototyping of a mechanical system considering the environment effect. Part 2: Simulation quality
%J Comptes Rendus. Mécanique
%D 2011
%P 605-615
%V 339
%N 9
%I Elsevier
%R 10.1016/j.crme.2011.06.003
%G en
%F CRMECA_2011__339_9_605_0
Zheng Wang. Interactive virtual prototyping of a mechanical system considering the environment effect. Part 2: Simulation quality. Comptes Rendus. Mécanique, Volume 339 (2011) no. 9, pp. 605-615. doi : 10.1016/j.crme.2011.06.003. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2011.06.003/

[1] Z. Wang Interactive virtual prototyping of a mechanical system considering the environment effect. Part 1: Modeling dynamics, C. R. Mecanique, Volume 399 (2011) | DOI

[2] J. Baumgarte Stabilization of constraints and integrals of motion in dynamical systems, Comput. Methods Appl. Mech. Engrg., Volume 1 (1972), pp. 1-16

[3] C.O. Chang; P.E. Nikravesh An adaptive constraint violation stabilization method for dynamic analysis of mechanical systems, J. Mech. Transmissions Autom. Design, Volume 107 (1985), pp. 488-492

[4] G.P.O. Stermeyer On Baumgarte stabilization for differential algebraic equations (J. Haug; R.C. Deyo, eds.), Real-Time Integration Methods for Mechanical System Simulations, NATO ASI Series, vol. F69, Springer, Berlin, 1990, pp. 193-207

[5] S. Yoon; R.M. Howe; D.T. Greenwood Stability and accuracy analysis of Baumgarteʼs constrained violation stabilization method, J. Mech. Design, Volume 117 (1995), pp. 446-453

[6] S.T. Lin; M.C. Hong Stabilization method for numerical integration of multi-body mechanical systems, J. Mech. Design, Volume 120 (1998), pp. 565-572

[7] B. Simeon MBSPACK. Numerical integration software for constrained mechanical motion, Surv. Math. Ind., Volume 5 (1995), pp. 169-202

[8] C.W. Gear; B. Leimkuhler; G.K. Gupta Automatic integration of Euler–Lagrange equations with constraints, J. Comput. Appl. Math., Volume 12–13 (1985), pp. 77-90

[9] C. Führer; B. Leimkuhler Numerical solution of differential-algebraic equations for constrained mechanical motion, Numer. Math., Volume 59 (1991), pp. 55-69

[10] W.M. Seiler Numerical integration of constrained Hamiltonian systems using Dirac brackets, Math. Comp., Volume 68 (1999), pp. 661-681

[11] S. Yoon; R.M. Howe; D.T. Greenwood Geometric elimination of constraint violations in numerical simulation of Lagrangian equations, J. Mech. Design, Volume 116 (1994), pp. 1058-1064

[12] W. Blajer A geometric unification of constrained system dynamics, Multibody Syst. Dyn., Volume 1 (1997), pp. 3-21

[13] Z. Terze; D. Lefeber; O. Muftic Null space integration method for constrained multi-body systems with no constraint violation, Multibody Syst. Dyn., Volume 6 (2001), pp. 229-243

[14] W. Blajer Elimination of constraint violation and accuracy aspects in numerical simulation of multi-body system, Multibody Syst. Dyn., Volume 7 (2002), pp. 265-284

[15] A. Laulusa; O.A. Bauchau Review of classical approaches for constraint enforcement in multi-body systems, J. Comput. Nonlinear Dynam., Volume 3 (2008), p. 11004

[16] O.A. Bauchau; A. Laulusa Review of contemporary approaches for constraint enforcement in multi-body systems, J. Comput. Nonlinear Dynam., Volume 3 (2008), p. 011005

[17] D.J. Braun; M. Goldfarb Eliminating constraint drift in the numerical simulation of constrained dynamical systems, Comput. Methods Appl. Mech. Engrg., Volume 198 (2009), pp. 3151-3160

[18] D. Baraff, Linear-time simulation using Lagrange-multipliers, in: Proc. SIGGRAPH, 1996, pp. 137–146.

[19] U.M. Ascher, D.K. Pai, P.G. Kry, Forward dynamics algorithms for multi-body chains and contact, in: Proc. IEEE Int. Conf. Robotics and Automation, 2000, pp. 857–862.

[20] Garcia de Jalon; E. Bayo Kinematic and Dynamic, Simulation of Multi-Body Stems: The Real Time Challenge, Springer-Verlag, 1994

[21] K.M. Lilly Efficient Dynamic Simulation of Mechanisms, Kluwer, 1993

[22] A. Eichberger; W. Rulka Process save reduction by macro joint approach: The key to real time and efficient vehicle simulation, Vehicle System Dynamics, Volume 41 (2004), pp. 401-413

[23] W. Rulka; E. Pankiewicz MBS approach to generate equations of motions for HiL-simulations in vehicle dynamics, Multibody Syst. Dyn., Volume 14 (2005), pp. 367-386

[24] E. Hairer; G. Wanner Solving Ordinary Differential Equations. II. Stiff and Differential-Algebraic Problems, Springer-Verlag, Berlin/Heidelberg/New York, 1996

[25] A. Tasora; D. Negrut; M. Anitescu Large-scale parallel multi-body dynamics with frictional contact on the graphical processing unit, Proc. Inst. Mech. Eng. K J. Multi-body Dyn., Volume 222 (2008) no. 4, pp. 315-326

[26] Homepage of the Open Dynamics Engine (ODE) http://www.ode.org/

[27] Homepage of the OpenTissue simulation framework http://www.opentissue.org

[28] F. Fleissner; P. Eberhard Parallel load-balanced simulation for short-range interaction particle methods with hierarchical particle grouping based on orthogonal recursive bisection, Internat. J. Numer. Methods Engrg., Volume 74 (2007), pp. 531-553

[29] E. Hairer; G. Wanner Solving Ordinary Differential Equations. II. Stiff and Differential-Algebraic Problems, Springer–Verlag, Berlin/Heidelberg/New York, 1996

Cité par Sources :

Commentaires - Politique


Ces articles pourraient vous intéresser

Interactive virtual prototyping of a mechanical system considering the environment effect. Part 1: Modeling dynamics

Zheng Wang

C. R. Méca (2011)


Implementation and experimental tests of an impedance control of pneumatic artificial muscles for isokinetic rehabilitation

Mahdi Chavoshian; Mostafa Taghizadeh; Nima Zamani Meymian

C. R. Méca (2020)