Comptes Rendus
Critical state notion and microstructural considerations in clays
Comptes Rendus. Mécanique, Volume 339 (2011) no. 11, pp. 719-726.

The aim of the experimental study was to identify the local deformation properties in a clayey material which can be activated at the macroscopic ultimate state known by critical state. The approach consists of an extensive study, based on a Scanning Electron Microscope (SEM) picture analysis, of the orientation of the clay particles characterized in the last stages of triaxial loading.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crme.2011.07.007
Keywords: Soils, Critical state line, Shear mechanism, Fabric/structure, Microscopy, Kaolinite, Triaxial tests

Mahdia Hattab 1

1 Laboratoire dʼEtude des Microstructures et de Mécanique des Matériaux, UMR CNRS 7239, Université Paul Verlaine, île du Saulcy, 57045 Metz cedex 1, France
@article{CRMECA_2011__339_11_719_0,
     author = {Mahdia Hattab},
     title = {Critical state notion and microstructural considerations in clays},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {719--726},
     publisher = {Elsevier},
     volume = {339},
     number = {11},
     year = {2011},
     doi = {10.1016/j.crme.2011.07.007},
     language = {en},
}
TY  - JOUR
AU  - Mahdia Hattab
TI  - Critical state notion and microstructural considerations in clays
JO  - Comptes Rendus. Mécanique
PY  - 2011
SP  - 719
EP  - 726
VL  - 339
IS  - 11
PB  - Elsevier
DO  - 10.1016/j.crme.2011.07.007
LA  - en
ID  - CRMECA_2011__339_11_719_0
ER  - 
%0 Journal Article
%A Mahdia Hattab
%T Critical state notion and microstructural considerations in clays
%J Comptes Rendus. Mécanique
%D 2011
%P 719-726
%V 339
%N 11
%I Elsevier
%R 10.1016/j.crme.2011.07.007
%G en
%F CRMECA_2011__339_11_719_0
Mahdia Hattab. Critical state notion and microstructural considerations in clays. Comptes Rendus. Mécanique, Volume 339 (2011) no. 11, pp. 719-726. doi : 10.1016/j.crme.2011.07.007. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2011.07.007/

[1] K.H. Roscoe; A.N. Schofield; C.P. Wroth On the yielding of soils, Géotechnique, Volume 8 (1958) no. 1, pp. 22-53

[2] K.H. Roscoe, A.N. Schofield, Mechanical behavior of an idealised ‘wet’ clay, in: Proc. 2nd Eur. Conf. SMFE, Wiesbaden, vol. 1, 1963, pp. 47–54.

[3] K.H. Roscoe; J.B. Burland On the generalised stress-strain behavior of ‘wet’ clay (J. Heyman; F.A. Leckie, eds.), Engineering Plasticity, Cambridge University Press, 1968, pp. 535-609

[4] A.N. Schofield; C.P. Wroth Critical State Soil Mechanics, McGraw-Hill, New York, 1968

[5] Y.F. Dafalias; L.R. Herrmann Bounding surface formulation of soil plasticity (G.N. Pande; O.C. Zienkiewicz, eds.), Soil Mechanics – Transient and Cyclic Loads, Wiley & Sons, New York, 1982, pp. 253-311

[6] J.-C. Hujeux Une loi de comportement pour le chargement cyclique des sols (V. Davidovici, ed.), Génie Parasismique, Presses ENPC, 1985, pp. 278-302

[7] J. Biarez; P.-Y. Hicher Elementary Mechanics of Soils Behavior – Saturated Remoulded Soils, Balkema, Rotterdam–Brookfield, 1994

[8] R.T. Martin; C.C. Ladd Fabric of consolidated kaolinite, Clays and Clay Minerals, Volume 23 (1975), pp. 17-25

[9] X. Bai; P. Smart Changement de la microstructure de la kaolinite soumise à un chargement triaxial non drainé, Géotechnique, Volume 47 (1997) no. 5, pp. 1009-1017

[10] R. Pusch Microstructural changes in soft quick clay at failure, Canadian Geotechnical Journal, Volume 7 (1997), pp. 1-7

[11] P. Dudoignon; A. Pantet; L. Carrara; B. Velde Mesure micro-macro de lʼarrangement des particules de kaolinite sous chargement triaxial, Géotechnique, Volume 51 (2001) no. 6, pp. 493-499

[12] N.R. Morgenstern; J.S. Tchalenko Microscopic structures in kaolin subjected in direct shear, Géotechnique, Volume 17 (1967), pp. 309-328

[13] P.-Y. Hicher; H. Wahyudi; D. Tessier Microstructural analysis of inherent and induced anisotropy in clay, Mechanics of Cohesive-Frictional Materials, Volume 5 (2000), pp. 341-371

[14] M. Hattab; J.-M. Fleureau Experimental analysis of kaolinite particle orientation during triaxial path, International Journal for Numerical and Analytical Methods in Geomechanics, Volume 35 (2011) no. 5, pp. 947-968

[15] M. Hattab; J.-M. Fleureau Experimental study of kaolin particle orientation mechanism, Géotechnique, Volume 60 (2010) no. 5, pp. 323-331

[16] P.-Y. Hicher, Comportement mécanique des argiles saturées sur divers chemins de sollicitations monotones et cycliques application à une modélisation élastoplastique et viscoplastique, Thèse de doctorat dʼétat des sciences physiques, Paris 6, 1985.

[17] P.V. Lade, J. Tsai, Effects of localization in triaxial tests on clays, in: Proc. ICSMFE, San Francisco, vol. 1, 1985, pp. 549–552.

[18] J.D. Frost; C. Yang Effect of end platens on microstructure evolution in dilatant specimens, Soils and Foundations, Volume 43 (2003) no. 4, pp. 1-11

[19] M. Hattab; S. Bouziri-Adrouche; J.-M. Fleureau Evolution de la microtexture dʼune matrice kaolinitique sur chemin triaxial axisymetrique, Canadian Geotechnical Journal, Volume 47 (2010) no. 1, pp. 34-48

[20] P. Delage; M. Pellerin Influence de la lyophilisation sur la structure dʼune argile sensible du Quebec, Clay Minerals, Volume 19 (1984), pp. 151-160

[21] D.J. Henkel The effect of overconsolidation on the behavior of clays during shear, Géotechnique, Volume 6 (1956), pp. 139-150

[22] M. Hattab; P.-Y. Hicher Dilating behavior of overconsolidated clay, Soils and Foundations, Volume 44 (2004) no. 4, pp. 27-40

[23] M.P. Luong Etat caractéristique du sol, C. R. Acad. Sci. Paris, Volume 287 (1978) no. 15, pp. 305-307

[24] Bouziri, Etude des mécanismes de déformation dans les argiles surconsolidées, Thèse de doctorat de lʼEcole Centrale Paris, Chatenay-Malabry, 2007.

Cited by Sources:

Comments - Policy