Comptes Rendus
Geometrically non-linear steady state periodic forced response of a clamped–clamped beam with an edge open crack
Comptes Rendus. Mécanique, Volume 339 (2011) no. 11, pp. 727-742.

The present work is concerned with the study of the geometrically non-linear steady state periodic forced response of a clamped–clamped beam containing an open crack. The model based on Hamiltonʼs principle and spectral analysis, previously used to investigate various non-linear vibration problems, is used here to determine the effect of the excitation frequency and level of the applied harmonic force, concentrated at the cracked beam middle span, on its dynamic response at large vibration amplitudes. The formulation uses the “cracked beam functions”, denoted as ‘CBF’, previously defined in recent works, obtained by combining the linear theory of vibration and the linear fracture mechanics theory. The crack has been modelled as a linear spring which, for a given depth, the spring constant remains the same for both directions. The results obtained may be used to detect cracks in vibrating structures, via examination of the qualitative and quantitative changes noticed in the non-linear dynamic behaviour, which is commented in the conclusion.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crme.2011.07.008
Mots-clés : Vibrations, Non-linear forced vibrations, Cracked beam

El bekkaye Merrimi 1 ; Khalid El bikri 1 ; Rhali Benamar 2

1 Université Mohammed V-Souissi, Ecole normale superieure de lʼenseignement technique Rabat, B.P. 6207, Rabat Instituts, Morocco
2 Ecole Mohammadia dʼingenieurs, departement des EGT, Av. Ibn Sina, Agdal, Rabat, Morocco
@article{CRMECA_2011__339_11_727_0,
     author = {El bekkaye Merrimi and Khalid El bikri and Rhali Benamar},
     title = {Geometrically non-linear steady state periodic forced response of a clamped{\textendash}clamped beam with an edge open crack},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {727--742},
     publisher = {Elsevier},
     volume = {339},
     number = {11},
     year = {2011},
     doi = {10.1016/j.crme.2011.07.008},
     language = {en},
}
TY  - JOUR
AU  - El bekkaye Merrimi
AU  - Khalid El bikri
AU  - Rhali Benamar
TI  - Geometrically non-linear steady state periodic forced response of a clamped–clamped beam with an edge open crack
JO  - Comptes Rendus. Mécanique
PY  - 2011
SP  - 727
EP  - 742
VL  - 339
IS  - 11
PB  - Elsevier
DO  - 10.1016/j.crme.2011.07.008
LA  - en
ID  - CRMECA_2011__339_11_727_0
ER  - 
%0 Journal Article
%A El bekkaye Merrimi
%A Khalid El bikri
%A Rhali Benamar
%T Geometrically non-linear steady state periodic forced response of a clamped–clamped beam with an edge open crack
%J Comptes Rendus. Mécanique
%D 2011
%P 727-742
%V 339
%N 11
%I Elsevier
%R 10.1016/j.crme.2011.07.008
%G en
%F CRMECA_2011__339_11_727_0
El bekkaye Merrimi; Khalid El bikri; Rhali Benamar. Geometrically non-linear steady state periodic forced response of a clamped–clamped beam with an edge open crack. Comptes Rendus. Mécanique, Volume 339 (2011) no. 11, pp. 727-742. doi : 10.1016/j.crme.2011.07.008. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2011.07.008/

[1] N.E. Dowling Mechanical Behaviour of Materials, Engineering Methods for Deformation, Fracture, and Fatigue, Prentice–Hall Int. Ed., 1993

[2] A.D. Dimarogonas, Crack identification in aircraft structures, in: 1st National Aircraft Conf., Greece, 1982.

[3] C. Hahin; J.M. South; J. Mohammadi; R.K. Polepeddi Damage in steel bridges, J. Struct. Eng., Volume 119 (1993) no. 1, pp. 150-167

[4] T.G. Chondros, A.D. Dimarogonas, Identification of cracks in circular plates welded at the contour, in: A.S.M.E. Design Eng. Technical Conf., 79-DET-106, St Louis, 1979.

[5] T.G. Chondros; A.D. Dimarogonas Identification of cracks in welded joints of complex structures, Journal of Sound and Vibration, Volume 69 (1980), pp. 531-538

[6] J.Y. Guigne, A.S.J. Swamidas, J. Guzzwell, Modal information from acoustic measurements for fatigue crack detection applications, in: Proceedings 11th Int. Conf. on Offshore Technology and Arctic Eng., vol. I, Part B, 1992.

[7] A.J. Dentoras; A.D. Dimarogonas Fatigue crack propagation in resonating structures, Eng. Fracture Mech., Volume 34 (1989) no. 3, pp. 721-728

[8] P. Rabbe; C. Amzallag Etude de lʼamorçage des fissures et de la vitesse de fissuration par fatigue de quelques aciers inoxidables austénitiques, Revue de Métallurgie (1974), pp. 931-941

[9] C. Mei; K.R. Wentz Large-amplitude random response of angle-ply laminated composite plates, American Institute of Aeronautics and Astronautics, Journal, Volume 20 (1982), pp. 1450-1458

[10] R.G. White Developments in the acoustic fatigue design process for composite aircraft structures, Composite Structures, Volume 16 (1990), pp. 171-192

[11] M.M. Bennouna; R.G. White The effect of large vibration amplitudes on the dynamic strain response of a clamped–clamped beam with consideration of fatigue life, Journal of Sound and Vibration, Volume 96 (1984), pp. 281-308

[12] F. Pérignon, Vibration forcée des structures minces, élastiques, non linéaires, Thèse, université Aix-Marseille II, 2004.

[13] R.D. Adams; P. Cawley; C.J. Pey; B.J. Stone A vibration technique for non-destructively assessing the integrity of structures, J. Mech. Eng. Sci., Volume 20 (1978), pp. 93-100

[14] H.J. Petroski Simple static and dynamic models for cracked elastic beams, International Journal of Fracture, Volume 17 (1972), pp. 71-76

[15] M.M.F. Yuen A numerical study of the eigenparameters of a damaged cantilever beam, Journal of Sound and Vibration, Volume 103 (1985) no. 3, pp. 301-310

[16] A.D. Dimarogonas; S.A. Paipetis Analytical Methods in Rotor Dynamics, Appl. Sci. Publishers, London, 1983 (pp. 144–193)

[17] C.A. Papadopoulos; A.D. Dimarogonas Coupling and bending of torsional vibration of cracked Timoshenko shaft, Ing. Arch., Volume 57 (1987), pp. 495-505

[18] I.W. Mayes, W.G.R. Davies, A method of calculating the vibrational behaviour of coupled rotating shafts containing a transverse cracks, Paper No. C254/80, in: I. Mech. E. Conf., 1980.

[19] P. Gudmundson, Changes in modal parameters resulting from small cracks, in: Proc. 2nd Int. Modal Analysis Conf., vol. 2, Union College, Orlando, NY, USA, 1984, pp. 690–697.

[20] P.E. Rizos; N. Aspragathos; A.D. Dimarogonas Identification of crack location and magnitude in a cantilever beam from the vibration modes, Journal of Sound and Vibration, Volume 138 (1990), pp. 381-388

[21] S. Loutridis; E. Douka; L.J. Hadjileontiadis Forced vibration behaviour and crack detection of cracked beams using instantaneous frequency, NDT&E International, Volume 38 (2005), pp. 411-419 | DOI

[22] S. Kitipornchai; L.L. Ke; J. Yang; Y. Xiang Nonlinear vibration of edge cracked functionally graded Timoshenko beams, Journal of Sound and Vibration, Volume 324 (2009), pp. 962-982 | DOI

[23] Ugo Andreaus; Paolo Baragatti Cracked beam identification by numerically analysing the nonlinear behaviour of the harmonically forced response, Journal of Sound and Vibration, Volume 330 (2011), pp. 721-742 | DOI

[24] R. Benamar, Non-linear dynamic behaviour of fully clamped beams and rectangular isotropic and laminated plates, Ph.D. thesis, University of Southampton, 1990.

[25] R. Benamar; M.M.K. Bennouna; R.G. White The effects of large vibration amplitudes on the mode shapes and natural frequencies of thin elastic structures. Part I: Simply supported and clamped–clamped beams, Journal of Sound and Vibration, Volume 149 (1991), pp. 179-195

[26] R. Benamar; M.M.K. Bennouna; R.G. White The effects of large vibration amplitudes on the mode shapes and natural frequencies of thin elastic structures. Part II: Fully clamped rectangular isotropic plates, Journal of Sound and Vibration, Volume 164 (1991), pp. 399-424

[27] L. Azrar; R. Benamar; R.G. White A semi-analytical approach to the non-linear dynamic response. Problem of S–S and C–C beams at large vibration amplitudes. Part I: General theory and application to the single mode approach to free and forced vibration analysis, Journal of Sound and Vibration, Volume 224 (1999), pp. 377-395

[28] L. Azrar; R. Benamar; R.G. White A semi-analytical approach to the non-linear dynamic response. Problem of beams at large vibration amplitudes. Part II: Multimode approach to the forced vibration analysis, Journal of Sound and Vibration, Volume 255 (2002) no. 1, pp. 1-41 | DOI

[29] L. Azrar, R. Benamar, R.G. White, Non-linear free and forced response of beams at large vibration amplitudes by a semi-analytical method, in: Proceedings of the Seventh International Conference – Structural Dynamics, Southampton, England, 2000.

[30] M. El Kadiri; R. Benamar; R.G. White Improvement of the semi-analytical method, based on Hamiltonʼs principle and spectral analysis, for determination of the geometrically non-linear free response of thin straight structures. Part I: Application to C–C and SS–C beams, Journal of Sound and Vibration, Volume 249 (2002) no. 2, pp. 263-305

[31] K. El Bikri; R. Benamar; M.M. Bennouna Geometrically non-linear free vibrations of clamped simply supported rectangular plates. Part I: The effects of large vibration amplitudes on the fundamental mode shape, Comput. Struct., Volume 81 (2003), pp. 2029-2043

[32] K. El Bikri; R. Benamar; M.M. Bennouna Geometrically non-linear free vibrations of clamped–clamped beams with an edge crack, Comput. Struct., Volume 84 (2006), pp. 485-502 | DOI

[33] G.R. Irwin Analyses of stresses and strains near the end of a crack transversing a plate, J. Appl. Mech., Volume 24 (1957), pp. 361-364

[34] H. Tada, The stress analysis of cracks handbook, in: 9th Cong. Appl. Mech., Brussels, 1957.

[35] ASTM Standarts, Part 31, 1968, pp. 1018–1030.

[36] W.T. Thomson Theory of Vibration with Applications, Prentice–Hall Inc., Englewood Cliffs, NJ, 1972

[37] A. Eddanguir; Z. Beidouri; R. Benamar Geometrically nonlinear transverse vibrations of discrete multi-degrees of freedom systems with a localised nonlinearity, International Journal of Mathematics and Statistics, Volume 4 ( Spring 2009 ) no. S09

  • Hafida Chekkouchi; El Bekkaye Merrimi Numerical Modelling of Nonlinear Vibrations of Mechanical Structures, Advances in Integrated Design and Production II (2023), p. 238 | DOI:10.1007/978-3-031-23615-0_25
  • Sayandip Ganguly; Koushik Roy Performance assessment of time-domain damage indicators based on output-only measurement and Poincaré map: A comparative review on nonlinear structures, Measurement, Volume 216 (2023), p. 112847 | DOI:10.1016/j.measurement.2023.112847
  • Abu SMZ Hasan; M S Rahman Multi-level residue harmonic balance method for nonlinear vibration of the beam, Journal of Low Frequency Noise, Vibration and Active Control, Volume 41 (2022) no. 1, p. 278 | DOI:10.1177/14613484211038403
  • Issam El Hantati; Ahmed Adri; Hatim Fakhreddine; Said Rifai; Rhali Benamar; Jie Yang Multimode Analysis of Geometrically Nonlinear Transverse Free and Forced Vibrations of Tapered Beams, Shock and Vibration, Volume 2022 (2022), p. 1 | DOI:10.1155/2022/8464255
  • Omar Outassafte; Ahmed Adri; Yassine El Khouddar; Said Rifai; Rhali Benamar Geometrically non-linear free and forced vibration of a shallow arch, Journal of Vibroengineering, Volume 23 (2021) no. 7, p. 1508 | DOI:10.21595/jve.2021.21857
  • Issam El Hantati; Ahmed Adri; Hatim Fakhreddine; Said Rifai; Rhali Benamar; Shuaishuai Sun A Multimode Approach to Geometrically Nonlinear Free and Forced Vibrations of Multistepped Beams, Shock and Vibration, Volume 2021 (2021) no. 1 | DOI:10.1155/2021/6697344
  • Shihua Zhou; Qi Li; Dong Ding; Tianzhuang Yu; Yongchao Zhang Dynamic characteristic analysis of harmonically excited cracked vibration platform with intermediate nonlinear support, Chaos, Solitons Fractals, Volume 140 (2020), p. 110228 | DOI:10.1016/j.chaos.2020.110228
  • Alborz Mirzabeigy; Reza Madoliat Large amplitude free vibration of axially loaded beams resting on variable elastic foundation, Alexandria Engineering Journal, Volume 55 (2016) no. 2, p. 1107 | DOI:10.1016/j.aej.2016.03.021
  • Abu Sufian MZ Hasan; Yiu-yin Lee; Andrew Yee-Tak Leung The multi-level residue harmonic balance solutions of multi-mode nonlinearly vibrating beams on an elastic foundation, Journal of Vibration and Control, Volume 22 (2016) no. 14, p. 3218 | DOI:10.1177/1077546314562225

Cité par 9 documents. Sources : Crossref

Commentaires - Politique