Exact solutions for the vibration of circumferentially stepped orthotropic circular cylindrical shells
Comptes Rendus. Mécanique, Volume 339 (2011) no. 11, pp. 708-718.

The combination of Flüggeʼs shell theory, the transfer matrix approach and the Romberg integration method are used to investigate the free vibration behaviour of stepped orthotropic cylindrical shells. The hoop step on the shell surface is described by a reduced thickness over part of its circumference. Modal displacements of the shell can be described by trigonometric functions and Fourierʼs approach is used to separate the variables. The vibration equations of the shell are reduced to eight first-order differential equations in the circumferential coordinate, and by using the transfer matrix of the shell, these equations can be written in a matrix differential equation. The transfer matrix is derived from the non-linear differential equations of the cylindrical shells by introducing the trigonometric functions in the longitudinal direction and applying the numerical integration in the circumferential direction. The proposed model is used to get the vibration frequencies and the corresponding mode shapes for symmetrical and antisymmetrical type-modes. Computed results indicate the sensitivity of the frequency parameters and the bending deformations to the geometry of stepped shell, and also to the axial and circumferential rigidities of the shell.

Accepted:
Published online:
DOI: 10.1016/j.crme.2011.08.001
Keywords: Vibrations, Frequencies, Transfer matrix approach, Orthotropic shell, Stepped shells, Symmetric and antisymmetric type-modes

Ahmed Mousa Khalifa 1

1 Department of Mathematics, Faculty of Science at Qena, South Valley University, Egypt
@article{CRMECA_2011__339_11_708_0,
author = {Ahmed Mousa Khalifa},
title = {Exact solutions for the vibration of circumferentially stepped orthotropic circular cylindrical shells},
journal = {Comptes Rendus. M\'ecanique},
pages = {708--718},
publisher = {Elsevier},
volume = {339},
number = {11},
year = {2011},
doi = {10.1016/j.crme.2011.08.001},
language = {en},
}
TY  - JOUR
AU  - Ahmed Mousa Khalifa
TI  - Exact solutions for the vibration of circumferentially stepped orthotropic circular cylindrical shells
JO  - Comptes Rendus. Mécanique
PY  - 2011
SP  - 708
EP  - 718
VL  - 339
IS  - 11
PB  - Elsevier
DO  - 10.1016/j.crme.2011.08.001
LA  - en
ID  - CRMECA_2011__339_11_708_0
ER  - 
%0 Journal Article
%A Ahmed Mousa Khalifa
%T Exact solutions for the vibration of circumferentially stepped orthotropic circular cylindrical shells
%J Comptes Rendus. Mécanique
%D 2011
%P 708-718
%V 339
%N 11
%I Elsevier
%R 10.1016/j.crme.2011.08.001
%G en
%F CRMECA_2011__339_11_708_0
Ahmed Mousa Khalifa. Exact solutions for the vibration of circumferentially stepped orthotropic circular cylindrical shells. Comptes Rendus. Mécanique, Volume 339 (2011) no. 11, pp. 708-718. doi : 10.1016/j.crme.2011.08.001. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2011.08.001/

[1] W. Flügge Stress in Shells, Springer-Verlag, Berlin, 1934

[2] A.E. Love Mathematical Theory of Elasticity, Dover, New York, 1944

[3] L. Rayleigh The Theory of Sound, Dover, New York, 1945

[4] A.W. Leissa, Vibration of shells, NASA, SP-288, Washington, 1973.

[5] G.B. Warburton Vibrations of thin circular cylindrical shell, J. Mech. Eng. Sci., Volume 7 (1965), pp. 399-407

[6] R.L. Goldman Mode shapes and frequencies of clamped-clamped cylindrical shells, AIAA J., Volume 12 (1974), pp. 1755-1756

[7] T. Markus The Mechanics of Vibrations of Cylindrical Shells, Elsevier, New York, 1988

[8] X.M. Zhang; G.R. Liu; K.Y. Lam Vibration analysis of thin cylindrical shells using wave propagation approach, J. Sound Vib., Volume 239 (2001) no. 3, pp. 397-403

[9] X.B. Li A new approach for free vibration of thin circular cylindrical shell, J. Sound Vib., Volume 296 (2006), pp. 91-98

[10] F. Pellicano Vibrations of circular cylindrical shells: theory and experiments, J. Sound Vib., Volume 303 (2007), pp. 154-170

[11] G.B. Warburton; A.M. Al-Najafi Free vibration of thin cylindrical shells with a discontinuity in the thickness, J. Sound Vib., Volume 9 (1969), pp. 373-382

[12] R.M. Bergman; S.A. Sidorin; P.E. Tovstik Construction of solutions of the equations for free vibration of a cylindrical shell of variable thickness along the directrix, J. Mech. Solids, Volume 14 (1979), pp. 127-134

[13] R.F. Tonin; A.D. Bies Free vibration of circular cylinders of variable thickness, J. Sound Vib., Volume 62 (1979) no. 2, pp. 165-180

[14] K. Suzuki; M. Konno; S. Takahashi Axisymmetric vibrations of cylindrical shell with varying thickness, Bull. Japan Soc. Mech. Eng., Volume 24 (1981), pp. 2122-2132

[15] K.R. Sivadas; N. Ganesan Free vibration of circular cylindrical shells with axially varying thickness, J. Sound Vib., Volume 147 (1991), pp. 165-180

[16] L. Zhang; Y. Xiang Exact solutions for vibration of stepped circular cylindrical shells, J. Sound Vib., Volume 299 (2006), pp. 948-964

[17] W.H. Duan; C.G. Koh Axisymmetric transverse vibrations of circular cylindrical shells with variable thickness, J. Sound Vib., Volume 317 (2008), pp. 1035-1041

[18] M. Khalifa A study of free vibration of a circumferentially non-uniform cylindrical shell with a four lobed cross section, J. Vib. Control, Volume 17 (2010) no. 8, pp. 1158-1172

[19] Y. Stavsky; R. Loewy On vibrations of heterogeneous orthotropic cylindrical shells, J. Sound Vib., Volume 15 (1971), pp. 235-256

[20] V.I. Kuptsov Natural transverse vibrations of cantilever orthotropic cylindrical shells, Prikl. Mekh., Volume 13 (1977) no. 4, pp. 38-44

[21] L.G. Bradford; S.B. Dong Natural vibrations of orthotropic cylindrical shells under initial stress, J. Sound Vib., Volume 60 (1978)

[22] W. Soedel Simplified equations and solutions for the vibration of orthotropic cylindrical shells, J. Sound Vib., Volume 87 (1983) no. 4, pp. 555-566

[23] G. Yamada; T. Irie; M. Tsushima Vibration and stability of orthotropic circular cylindrical shells subjected to axial load, J. Acoust. Soc. Am., Volume 75 (1984) no. 3, pp. 842-848

[24] D.G. Lee Calculations of natural frequencies vibration of thin orthotropic composite shells by energy method, J. Composite Materials, Volume 22 (1988) no. 12, pp. 1102-1115

[25] N. Ganesan; K.R. Sivadas Vibration analysis of orthotropic shells with variable thickness, Comput. Struct., Volume 35 (1990), pp. 239-248

[26] A. Joesph; N. Ganesan Deformation of orthotropic cylindrical shells with discontinuity in thickness subjected to asymmetric loading, Composite Struct., Volume 30 (1995) no. 1, pp. 69-83

[27] A. Tesar; L. Fillo Transfer Matrix Method, Kluwer Academic, Dordrecht, 1988

[28] W. Flügge Stress in Shells, Springer-Verlag, New York, 1973

[29] V.V. Novozhilov The Theory of Thin Elastic Shells, P. Noordhoff Ltd., Groningen, The Netherlands, 1964

[30] R. Uhric Elastostatik und Elastokinetikin Matrizenschreibweise, Springer, Berlin, 1973

[31] S. Swaddiwudhipong; J. Tian; C.M. Wang Vibration of cylindrical shells with intermediate supports, J. Sound Vib., Volume 187 (1995) no. 1, pp. 69-93

[32] Y. Xiang; Y.F. Ma; S. Kitipornchai; C.W. Lim; C.W. Lau Exact solutions for vibration of cylindrical shells with intermediate ring supports, Int. J. Mech. Sci., Volume 44 (2002), pp. 1907-1924

Cited by Sources: