This article deals with the problem of an isolated, rigid inclusion with linear-magnetic behavior embedded in a linear-elastic matrix. Under the hypothesis of infinitesimal deformations, an analytical expression is obtained for the equilibrium rotation of the magnetic inclusion under general magneto-mechanical loading conditions. The results show that the inclusion undergoes an ‘extra’ rotation due to the presence of non-aligned magnetic fields (even in the absence of mechanical loadings). Moreover, this extra rotation is found to depend on the shape of the inclusion, as well as on its magnetic anisotropy. Thus, the extra rotation increases monotonically to an asymptote with increasing magnetic anisotropy of the inclusion, while, for fixed magnetic behavior of the inclusion, the extra rotation increases up to a maximum with increasing aspect ratio, and then decays to zero.
M.H. Siboni 1; Pedro Ponte Castañeda 1, 2, 3
@article{CRMECA_2012__340_4-5_205_0, author = {M.H. Siboni and Pedro Ponte Casta\~neda}, title = {A magnetically anisotropic, ellipsoidal inclusion subjected to a non-aligned magnetic field in an elastic medium}, journal = {Comptes Rendus. M\'ecanique}, pages = {205--218}, publisher = {Elsevier}, volume = {340}, number = {4-5}, year = {2012}, doi = {10.1016/j.crme.2012.02.003}, language = {en}, }
TY - JOUR AU - M.H. Siboni AU - Pedro Ponte Castañeda TI - A magnetically anisotropic, ellipsoidal inclusion subjected to a non-aligned magnetic field in an elastic medium JO - Comptes Rendus. Mécanique PY - 2012 SP - 205 EP - 218 VL - 340 IS - 4-5 PB - Elsevier DO - 10.1016/j.crme.2012.02.003 LA - en ID - CRMECA_2012__340_4-5_205_0 ER -
%0 Journal Article %A M.H. Siboni %A Pedro Ponte Castañeda %T A magnetically anisotropic, ellipsoidal inclusion subjected to a non-aligned magnetic field in an elastic medium %J Comptes Rendus. Mécanique %D 2012 %P 205-218 %V 340 %N 4-5 %I Elsevier %R 10.1016/j.crme.2012.02.003 %G en %F CRMECA_2012__340_4-5_205_0
M.H. Siboni; Pedro Ponte Castañeda. A magnetically anisotropic, ellipsoidal inclusion subjected to a non-aligned magnetic field in an elastic medium. Comptes Rendus. Mécanique, Recent Advances in Micromechanics of Materials, Volume 340 (2012) no. 4-5, pp. 205-218. doi : 10.1016/j.crme.2012.02.003. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2012.02.003/
[1] The determination of the elastic field of an ellipsoidal inclusion, and related problems, Proc. R. Soc. Lond. A, Volume 241 (1957), pp. 367-396 | DOI
[2] A Treatise on Electricity and Magnetism, Clarendon Press, Oxford, 1873 (Article 111)
[3] Variational and related methods for the overall properties of composites, Adv. Appl. Mech., Volume 21 (1981), pp. 1-78 | DOI
[4] The determination of the elastic and electric fields in a piezoelectric inhomogeneity, J. Appl. Phys., Volume 72 (1992), pp. 1086-1095 | DOI
[5] An analysis of piezoelectric composite materials containing ellipsoidal inhomogeneities, Proc. R. Soc. Lond. A, Volume 443 (1993), pp. 265-267 | DOI
[6] Magneto–electro-elastic Eshelby tensors for a piezoelectric–piezomagnetic composite reinforced by ellipsoidal inclusions, J. Appl. Phys., Volume 83 (2009), pp. 5364-5370 | DOI
[7] Electrodynamics of Continuous Media, Pergamon Press, Great Britain, 1984
[8] J.M. Ginder, M.E. Nichols, L.D. Elie, J.L. Tardiff, Magnetorheological elastomers: Properties and applications, in: Proc. SPIE, vol. 3675, 1999, pp. 131–138, . | DOI
[9] Magnetostrictive phenomena in magnetorheological elastomers, Int. J. Modern Phys. B, Volume 16 (2002), pp. 2412-2418 | DOI
[10] Magnetostrictive effect of magnetorheological elastomer, J. Magn. Magn. Mater., Volume 320 (2008), pp. 158-163 | DOI
[11] On the magneto-elastic properties of elastomer–ferromagnet composites, J. Mech. Phys. Solids, Volume 49 (2001), pp. 2877-2919 | DOI
[12] Magneto-elastic modeling of composites containing chain-structured magnetostrictive particles, J. Mech. Phys. Solids, Volume 54 (2006), pp. 975-1003 | DOI
[13] Magnetostrictive composites in the dilute limit, J. Mech. Phys. Solids, Volume 54 (2006), pp. 951-974 | DOI
[14] Bounds and self-consistent estimates for the overall properties of anisotropic composites, J. Mech. Phys. Solids, Volume 25 (1977), pp. 185-202 | DOI
[15] A rotated rigid ellipsoidal inclusion in an infinite elastic medium, Proc. R. Soc. Lond. A, Volume 433 (1991), pp. 179-207 | DOI
[16] Electromagnetic field matter interactions in thermodynamic solids and viscous fluids (R. Beig et al., eds.), Lect. Notes Phys., vol. 710, Springer, Berlin, 2006 | DOI
[17] The Principles of Electromagnetic Theory, Cambridge University Press, Cambridge, 1990
[18] Homogenization-based constitutive models for magnetorheological elastomers at finite strains, J. Mech. Phys. Solids, Volume 59 (2011), pp. 194-215 | DOI
[19] Foundations of Electromagnetism Theory, Addison–Wesley Publishing Company, Reading, MA, 1962
[20] Elastic space containing a rigid ellipsoidal inclusion subjected to translation and rotation (T.-J. Chuang; J.W. Rudnicki, eds.), Multiscale Deformation and Fracture in Materials and Structures, Kluwer Academic, Netherlands, 2001, pp. 123-143
[21] Bounds and estimates for the properties of nonlinear heterogeneous systems, Phil. Trans. R. Soc. Lond. A, Volume 340 (1992), pp. 531-567 | DOI
[22] Effective properties of nonlinear inhomogeneous dielectrics, Phys. Rev. B, Volume 64 (1992), pp. 4387-4394 | DOI
[23] A second-order homogenization procedure in finite elasticity and applications to black-filled elastomers, J. Mech. Phys. Solids, Volume 48 (2000), pp. 1389-1411 | DOI
[24] On the overall behavior, microstructure evolution, and macroscopic stability in reinforced rubbers at large deformations: I—Theory, J. Mech. Phys. Solids, Volume 54 (2006), pp. 807-830 | DOI
[25] The Mathematical Theory of Elasticity, Dover Publications, New York, 1944
Cited by Sources:
Comments - Policy