Comptes Rendus
Various estimates of Representative Volume Element sizes based on a statistical analysis of the apparent behavior of random linear composites
Comptes Rendus. Mécanique, Volume 340 (2012) no. 4-5, pp. 230-246.

This article aims at proposing various estimates of the size of the Representative Volume Element (RVE) of random linear elastic matrix–inclusion composites. These estimates are derived from the computation of the apparent behavior of finite size volume elements (VE) by a new procedure presented in [18] by Salmi et al. (2012) and briefly recalled. Two different points of view to define an RVE are considered: the RVE is defined as being the smallest VE required either to evaluate numerically the considered effective property of the composite by appropriate statistical averaging of apparent ones, or to be allowed to replace any instance of the heterogeneous material by a unique homogeneous equivalent one in structural mechanics problems. In order to introduce the fluctuations of the apparent properties within such definitions of the RVE size, we first study the statistics of the apparent properties. Then, relying on the results of this statistical study, several proposals of RVE criteria are presented and applied to random linear elastic fiber–matrix composites for several contrasts and inclusion (or pore) volume fractions.

Published online:
DOI: 10.1016/j.crme.2012.02.007
Keywords: RVE size, Apparent behavior, Fluctuations, Random linear composites

Moncef Salmi 1; François Auslender 1; Michel Bornert 2; Michel Fogli 1

1 Mechanical Engineering Research Group, Blaise Pascal University/IFMA, BP 265, 63175 Aubière, France
2 Laboratoire Navier, Université Paris-Est, École des Ponts ParisTech, Champs-sur-Marne, 77455 Marne-la-Vallée cedex, France
@article{CRMECA_2012__340_4-5_230_0,
     author = {Moncef Salmi and Fran\c{c}ois Auslender and Michel Bornert and Michel Fogli},
     title = {Various estimates of {Representative} {Volume} {Element} sizes based on a statistical analysis of the apparent behavior of random linear composites},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {230--246},
     publisher = {Elsevier},
     volume = {340},
     number = {4-5},
     year = {2012},
     doi = {10.1016/j.crme.2012.02.007},
     language = {en},
}
TY  - JOUR
AU  - Moncef Salmi
AU  - François Auslender
AU  - Michel Bornert
AU  - Michel Fogli
TI  - Various estimates of Representative Volume Element sizes based on a statistical analysis of the apparent behavior of random linear composites
JO  - Comptes Rendus. Mécanique
PY  - 2012
SP  - 230
EP  - 246
VL  - 340
IS  - 4-5
PB  - Elsevier
DO  - 10.1016/j.crme.2012.02.007
LA  - en
ID  - CRMECA_2012__340_4-5_230_0
ER  - 
%0 Journal Article
%A Moncef Salmi
%A François Auslender
%A Michel Bornert
%A Michel Fogli
%T Various estimates of Representative Volume Element sizes based on a statistical analysis of the apparent behavior of random linear composites
%J Comptes Rendus. Mécanique
%D 2012
%P 230-246
%V 340
%N 4-5
%I Elsevier
%R 10.1016/j.crme.2012.02.007
%G en
%F CRMECA_2012__340_4-5_230_0
Moncef Salmi; François Auslender; Michel Bornert; Michel Fogli. Various estimates of Representative Volume Element sizes based on a statistical analysis of the apparent behavior of random linear composites. Comptes Rendus. Mécanique, Volume 340 (2012) no. 4-5, pp. 230-246. doi : 10.1016/j.crme.2012.02.007. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2012.02.007/

[1] K. Hill Elastic properties of reinforced solids: Some theoretical principles, Journal of the Mechanics and Physics of Solids, Volume 11 (1963), pp. 357-372

[2] Z. Hashin Analysis of composite materials, Journal of Applied Mechanics, Volume 50 (1983), pp. 481-505

[3] M. Ostoja-Starzewski Material spatial randomness: From statistical to representative volume element, Probabilistic Engineering Mechanics, Volume 21 (2006), pp. 112-132

[4] E. Sanchez-Palencia Non-Homogeneous Media and Vibration Theory, Lecture Notes in Physics, vol. 127, Springer Verlag, Berlin–New York, 1980

[5] G.C. Papanicolaou; S.R.S. Varadhan Rigorous results in statistical mechanics in quantum field theory (J. Fritz; J.L. Lebowitz; D. Szasz, eds.), Colloquia Mathematica Societatis Janos Bolyai, North-Holland, Amsterdam, 1978, pp. 835-873

[6] K. Sab On the homogenization and the simulation of random materials, European Journal of Mechanics A/Solids, Volume 11 (1992), pp. 585-607

[7] W.J. Drugan; J.R. Willis A micromechanics-based nonlocal constitutive equation and estimates of representative volume element size for elastic composites, Journal of the Mechanics and Physics of Solids, Volume 44 (1996), pp. 497-524

[8] L. Monetto; W.J. Drugan A micromechanics-based nonlocal constitutive equation for elastic composites containing randomly oriented spheroidal heterogeneities, Journal of the Mechanics and Physics of Solids, Volume 52 (2004), pp. 359-393

[9] L. Monetto; W.J. Drugan A micromechanics-based nonlocal constitutive equation and minimum RVE size estimates for random elastic composites containing aligned spheroidal heterogeneities, Journal of the Mechanics and Physics of Solids, Volume 57 (2009), pp. 1578-1595

[10] A. Gusev Representative volume element size for elastic composites: A numerical study, Journal of the Mechanics and Physics of Solids, Volume 45 (1997), pp. 1449-1459

[11] M. Ostoja-Starzewski Random field models of heterogeneous materials, International Journal of Solids and Structures, Volume 35 (1998), pp. 2429-2455

[12] J. Segurado; J. Llorca A numerical approximation to the elastic properties of sphere-reinforced composites, Journal of the Mechanics and Physics of Solids, Volume 50 (2002), pp. 2107-2121

[13] T. Kanit; S. Forest; I. Galliet; V. Mounoury; D. Jeulin Determination of the size of the representative volume element for random composites: statistical and numerical, International Journal of Solids and Structures, Volume 40 (2003), pp. 3647-3679

[14] I.M. Gitman; M.B. Gitman; H. Askes Quantification of stochastically stable representative volumes for random heterogeneous materials, Archive of Applied Mechanics, Volume 75 (2006), pp. 79-92

[15] C. Pelissou; J. Baccou; Y. Monerie; F. Perales Determination of the size of the representative volume element for random quasi-brittle composites, International Journal of Solids and Structures, Volume 46 (2009), pp. 2842-2855

[16] J. Escoda; F. Willot; D. Jeulin; J. Sanahuja; C. Toulemonde Estimation of local stresses and elastic properties of a mortar sample by FFT computation of fields on a 3D image, Cement and Concrete Research, Volume 41 (2011), pp. 542-556

[17] I.M. Gitman; H. Askes; L.J. Sluys Representative volume: Existence and size determination, Engineering Fracture Mechanics, Volume 74 (1996), pp. 2518-2534

[18] M. Salmi, F. Auslender, M. Bornert, M. Fogli, Apparent and effective mechanical properties of linear matrix–inclusion random composites: improved bounds for the effective behavior, International Journal of Solids and Structures (2012), in press, . | DOI

[19] C. Huet Application of variational concepts to size effects in elastic heterogeneous bodies, Journal of the Mechanics and Physics of Solids, Volume 38 (1990), pp. 813-841

[20] M. Danielsson; D. Parks; M. Boyce Micromechanics, macromechanics and constitutive modeling of the elasto-viscoplastic deformation rubber-toughened glassy polymers, Journal of the Mechanics and Physics of Solids, Volume 55 (2007), pp. 533-561

[21] M. Ostoja-Starzewski; P.Y. Sheng; K. Alzebdeh Spring network models in elasticity and fracture of composites and polycrystals, Computational Materials Science, Volume 7 (1996), pp. 82-93

[22] N. Bilger; F. Auslender; M. Bornert; J.-C. Michel; H. Moulinec; P. Suquet; A. Zaoui Effect of nonuniform distribution of voids on the plastic response of voided materials: a computational and statistical analysis, International Journal of Solids and Structures, Volume 42 (2005), pp. 517-538

[23] C. Stolz; A. Zaoui Analyse morphologique et approches variationnelles du comportement dʼun milieu élastique hétérogène, Comptes Rendus de lʼAcadémie des Sciences II, Volume 312 (1991), pp. 143-150

[24] M. Bornert; C. Stolz; A. Zaoui Morphologically representative pattern-based bounding in elasticity, Journal of the Mechanics and Physics of Solids, Volume 44 (1996), pp. 307-331

[25] M.D. Rintoul; S. Torquato Reconstruction of the structure of dispersions, Journal of Colloid and Interface Science, Volume 186 (1997), pp. 467-476

[26] F. Willot; Y.P. Pellegrini; P.P. Castaneda Localization of elastic deformation in strongly anisotropic, porous, linear materials with periodic microstructures: Exact solutions and dilute expansions, Journal of the Mechanics and Physics of Solids, Volume 56 (2008), pp. 1245-1268

[27] J.D. Eshelby The determination of the elastic field of an ellipsoidal inclusion and related problems, Proceeding of the Royal Society A, Volume 421 (1957), pp. 376-396

[28] F. Willot; D. Jeulin Elastic behavior of composites containing Boolean random sets of inhomogeneities, International Journal of Engineering Science, Volume 47 (2009), pp. 313-324

[29] G. Casella; R.L. Berger Statistical Inference, Duxbury Press, United States, 2001

[30] V. Blanc, Modélisation du comportement thermomécanique des combustibles à particules par une approche multi-échelle, PhD thesis, Université de Provence, 11 décembre 2009.

[31] S. Hazanov; C. Huet Order relationships for boundary conditions effect in heterogeneous bodies smaller than the representative volume, Journal of the Mechanics and Physics of Solids, Volume 42 (1994), pp. 1995-2011

[32] R.G. Ghanem; P.D. Spanos Stochastic Finite Elements: A Spectral Approach, Dover Publications, 1991

Cited by Sources:

Comments - Policy