Comptes Rendus
Interface controlled plastic flow modelled by strain gradient plasticity theory
Comptes Rendus. Mécanique, Recent Advances in Micromechanics of Materials, Volume 340 (2012) no. 4-5, pp. 247-260.

The resistance to plastic flow in metals is often dominated by the presence of interfaces which interfere with dislocation nucleation and motion. Interfaces can be static such as grain and phase boundaries or dynamic such as new boundaries resulting from a phase transformation. The interface can be hard and fully impenetrable to dislocations, or soft and partly or fully transparent. The interactions between dislocations and interfaces constitute the main mechanism controlling the strength and strain hardening capacity of many metallic systems especially in very fine microstructures with a high density of interfaces. A phenomenological strain gradient plasticity theory is used to introduce, within a continuum framework, higher order boundary conditions which empirically represent the effect of interfaces on plastic flow. The strength of the interfaces can evolve during the loading in order to enrich the description of their response. The behaviour of single and dual phase steels, with possible TRIP effect, accounting for the interactions with static and dynamic boundaries, is addressed, with a specific focus on the size dependent strength and ductility balance. The size dependent response of weak precipitate free zones surrounding grain boundaries is treated as an example involving more than one microstructural length scale.

Publié le :
DOI : 10.1016/j.crme.2012.02.008
Keywords: Constitutive models, Strength, Ductility, Strain gradient plasticity, Size effects, Interfaces

Thomas Pardoen 1 ; Thierry J. Massart 2

1 Institute of Mechanics, Materials and Civil Engineering, Université catholique de Louvain, B-1348 Louvain-la-Neuve, Belgium
2 Université Libre de Bruxelles (ULB), Building, Architecture & Town Planning Dept. (BATir), CP 194/02, Avenue F.D. Roosevelt 50, B-1050 Bruxelles, Belgium
@article{CRMECA_2012__340_4-5_247_0,
     author = {Thomas Pardoen and Thierry J. Massart},
     title = {Interface controlled plastic flow modelled by strain gradient plasticity theory},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {247--260},
     publisher = {Elsevier},
     volume = {340},
     number = {4-5},
     year = {2012},
     doi = {10.1016/j.crme.2012.02.008},
     language = {en},
}
TY  - JOUR
AU  - Thomas Pardoen
AU  - Thierry J. Massart
TI  - Interface controlled plastic flow modelled by strain gradient plasticity theory
JO  - Comptes Rendus. Mécanique
PY  - 2012
SP  - 247
EP  - 260
VL  - 340
IS  - 4-5
PB  - Elsevier
DO  - 10.1016/j.crme.2012.02.008
LA  - en
ID  - CRMECA_2012__340_4-5_247_0
ER  - 
%0 Journal Article
%A Thomas Pardoen
%A Thierry J. Massart
%T Interface controlled plastic flow modelled by strain gradient plasticity theory
%J Comptes Rendus. Mécanique
%D 2012
%P 247-260
%V 340
%N 4-5
%I Elsevier
%R 10.1016/j.crme.2012.02.008
%G en
%F CRMECA_2012__340_4-5_247_0
Thomas Pardoen; Thierry J. Massart. Interface controlled plastic flow modelled by strain gradient plasticity theory. Comptes Rendus. Mécanique, Recent Advances in Micromechanics of Materials, Volume 340 (2012) no. 4-5, pp. 247-260. doi : 10.1016/j.crme.2012.02.008. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2012.02.008/

[1] E. Arzt; G. Dehm; P. Gumbsch; O. Kraft; D. Weiss Interface controlled plasticity in metals: dispersion hardening and thin film deformation, Prog. Mater. Sci., Volume 46 (2001), pp. 283-307

[2] M.A. Meyers; A. Mishra; D.J. Benson Mechanical properties of nanocrystalline materials, Prog. Mater. Sci., Volume 51 (2006), pp. 427-556

[3] M. Dao; L. Lu; R.J. Asaro; J.T.M. De Hosson; E. Ma Toward a quantitative understanding of mechanical behavior of nanocrystalline metals, Acta Mater., Volume 55 (2007), pp. 4041-4065

[4] L. Zhu; H. Ruan; X. Li; M. Dao; H. Gao; J. Lu Modeling grain size dependent optimal twin spacing for achieving ultimate high strength and related high ductility in nanotwinned metals, Acta Mater., Volume 59 (2011), pp. 5544-5557

[5] N.A. Fleck; J.W. Hutchinson Strain gradient plasticity, Adv. Appl. Mech., Volume 33 (1997), pp. 295-361

[6] A. Needleman; J. Gil Sevillano Preface to the viewpoint set on: geometrically necessary dislocations and size dependent plasticity, Scripta Mater., Volume 48 (2003), pp. 109-111

[7] P. Gudmundson A unified treatment of strain gradient plasticity, J. Mech. Phys. Solids, Volume 52 (2004), pp. 1379-1406

[8] M.G.D. Geers; W.A.M. Brekelmans; C.J. Bayley Second-order crystal plasticity: internal stress effects and cyclic loading, Modell. Simul. Mater. Sci. Eng., Volume 15 (2007), pp. 133-145

[9] N.A. Fleck; J.R. Willis A mathematical basis for strain-gradient plasticity theory. Part II: Tensorial plastic multiplier, J. Mech. Phys. Solids, Volume 57 (2009), pp. 1045-1057

[10] M.E. Gurtin; L. Anand Nanocrystalline grain boundaries that slip and separate: A gradient theory that accounts for grain-boundary stress and conditions at a triple-junction, J. Mech. Phys. Solids, Volume 56 (2008), pp. 184-199

[11] R.K. Abu Al-Rub; G.Z. Voyiadjis A physically based gradient plasticity theory, Int. J. Plasticity, Volume 22 (2006), pp. 654-684

[12] W.A.T. Clark; R.H. Wagoner; Z.Y. Shen; T.C. Lee; I.M. Robertson; H.K. Birnbaum On the criteria for slip transmission across interfaces in polycrystals, Scripta Metall. Mater., Volume 26 (1992), pp. 203-206

[13] H. Van Swygenhoven; P.M. Derlet; A.G. Froseth Nucleation and propagation of dislocations in nanocrystalline fcc metals, Acta Mater., Volume 54 (2006), pp. 1975-1983

[14] A. Ma; F. Roters; D. Raabe On the consideration of interactions between dislocations and grain boundaries in crystal plasticity finite element modeling – Theory, experiments, and simulations, Acta Mater., Volume 54 (2006), pp. 2181-2194

[15] T. Gorkaya; K.D. Molodov; D.A. Molodov; G. Gottstein Concurrent grain boundary motion and grain rotation under an applied stress, Acta Mater., Volume 59 (2011), pp. 5674-5680

[16] F. Mompiou; M. Legros; D. Caillard SMIG model: A new geometrical model to quantify grain boundary-based plasticity, Acta Mater., Volume 58 (2010), pp. 3676-3689

[17] J.W. Christian; S. Mahajan Deformation twinning, Prog. Mater. Sci., Volume 39 (1995), pp. 1-157

[18] K. Lu; L. Lu; S. Suresh Strengthening materials by engineering coherent internal boundaries at the nanoscale, Science, Volume 324 (2009), pp. 349-352

[19] Z.X. Wu; Y.W. Zhang; D.J. Srolovitz Dislocation–twin interaction mechanisms for ultrahigh strength and ductility in nanotwinned metals, Acta Mater., Volume 57 (2009), pp. 4508-4518

[20] H. Idrissi; M.S. Colla; B. Wang; D. Schrijvers; J.P. Raskin; T. Pardoen Strength and ductility of nanocrystalline freestanding palladium films, Adv. Mater., Volume 23 (2011) no. 18, pp. 2119-2122

[21] O. Bouaziz; S. Allain; C. Scott Effect of grain and twin boundaries on the hardening mechanisms of twinning-induced plasticity steels, Scripta Mater., Volume 58 (2008), pp. 484-487

[22] J. Gil Sevillano An alternative model for the strain hardening of FCC alloys that twin, validated for twinning-induced plasticity steel, Scripta Mater., Volume 60 (2009), pp. 336-339

[23] H. Idrissi; K. Renard; L. Ryelandt; D. Schryvers; P.J. Jacques On the mechanism of twin formation in Fe–Mn–C TWIP steels, Acta Mater., Volume 58 (2010), pp. 2464-2476

[24] R.G. Stringfellow; D.M. Parks; G.B. Olson A constitutive model for transformation plasticity accompanying strain-induced martensitic transformations in metastable austenitic steels, Acta Metall. Mater., Volume 40 (1992), pp. 1703-1716

[25] F.D. Fischer; G. Reisner; E. Werner; K. Tanaka; G. Cailletaud; T. Antretter A new view on transformation induced plasticity (TRIP), Int. J. Plasticity, Volume 16 (2000), pp. 723-748

[26] F. Lani; Q. Furnémont; T. Van Rompaey; F. Delannay; P.J. Jacques; T. Pardoen Multiscale mechanics of TRIP-assisted multiphase steels: II. Micromechanical modelling, Acta Mater., Volume 55 (2007), pp. 3695-3705

[27] P.J. Jacques; Q. Furnemont; S. Godet; T. Pardoen; K.T. Conlon; F. Delannay Micromechanical characterisation of TRIP-assisted multiphase steels by in situ neutron diffraction, Phil. Mag., Volume 86 (2006), pp. 2371-2392

[28] V. Gerold Precipitation hardening, Dislocations in Solids, North-Holland Publishing Company, Amsterdam, 1979

[29] A. Simar; Y. Bréchet; B. de Meester; A. Denquin; T. Pardoen Modeling microstructures and local tensile properties of friction stir welds in aluminum alloy 6005A-T6, Acta Mater., Volume 55 (2007), pp. 6133-6143

[30] D. Dumont; A. Deschamps; Y. Bréchet A model for predicting fracture mode and toughness in 7000 series aluminium alloys, Acta Mater., Volume 52 (2004), pp. 2529-2540

[31] T.F. Morgeneyer; M.J. Starink; S.C. Wang; I. Sinclair Quench sensitivity of toughness in an Al alloy: Direct observation and analysis of failure initiation at the precipitate-free zone, Acta Mater., Volume 56 (2008), pp. 2872-2884

[32] T. Krol; D. Baither; E. Nembach The formation of precipitate free zones along grain boundaries in a superalloy and the ensuing effects on its plastic deformation, Acta Mater., Volume 52 (2004), pp. 2095-2108

[33] J.P. Hirth; J. Lothe Theory of Dislocations, Wiley, 1982 (1st edition, McGraw–Hill, 1968)

[34] L.B. Freund; S. Suresh Thin Film Materials, Cambridge University Press, 2003 (ISBN: 0521822815)

[35] S. Puri; A. Das; A. Acharya Mechanical response of multicrystalline thin films in mesoscale field dislocation mechanics, J. Mech. Phys. Solids, Volume 59 (2011) no. 11, pp. 2400-2417

[36] C. Brugger; M. Coulombier; T.J. Massart; J.-P. Raskin; T. Pardoen Strain gradient plasticity analysis of the strength and ductility of thin metallic films using enriched interface model, Acta Mater., Volume 58 (2010), pp. 4940-4949

[37] N.A. Fleck; G.M. Muller; M.F. Ashby; J.W. Hutchinson Strain gradient plasticity: theory and experiment, Acta Metall. Mater., Volume 42 (1994), pp. 475-487

[38] J.S. Stölken; A.G. Evans A microbend test method for measuring the plasticity length scale, Acta Mater., Volume 46 (1998), pp. 5109-5115

[39] M.E. Gurtin A theory of grain boundaries that accounts automatically for grain misorientation and grain-boundary orientation, J. Mech. Phys. Solids, Volume 56 (2008), pp. 640-662

[40] K.E. Aifantis; J.R. Willis Scale effects induced by strain-gradient plasticity and interfacial resistance in periodic and randomly heterogeneous media, Mech. Mater., Volume 38 (2006), pp. 702-716

[41] N.A. Fleck; J.R. Willis A mathematical basis for strain-gradient plasticity theory – Part I: Scalar plastic multiplier, J. Mech. Phys. Solids, Volume 57 (2009), pp. 161-177

[42] U. Borg; C.F. Niordson; J.W. Kysar Size effects on void growth in single crystals with distributed voids, Int. J. Plasticity, Volume 24 (2008), pp. 688-701

[43] M.I. Hussein; U. Borg; C.F. Niordson; V.S. Deshpande Plasticity size effects in voided crystals, J. Mech. Phys. Solids, Volume 56 (2008), pp. 114-131

[44] L. Mazzoni-Leduc; T. Pardoen; T.J. Massart Strain gradient plasticity analysis of transformation induced plasticity in multiphase steels, Int. J. Solids Struct., Volume 45 (2008), pp. 5397-5418

[45] L. Mazzoni-Leduc; T. Pardoen; T.J. Massart Strain gradient plasticity analysis of the size effects associated to the transformation strain in TRIP steels, Eur. J. Mech. A – Solids, Volume 29 (2010), pp. 132-142

[46] T.J. Massart; T. Pardoen Strain gradient plasticity analysis of the size dependent strength and ductility in single phase metals with evolving grain boundary confinement, Acta Mater., Volume 58 (2010), pp. 5768-5781

[47] T.J. Massart, T. Pardoen, Strain gradient plasticity analysis of hardening in dual phase steels with enhanced higher order interface conditions, submitted for publication.

[48] N.A. Fleck; J.W. Hutchinson A reformulation of strain gradient plasticity, J. Mech. Phys. Solids, Volume 49 (2001), pp. 2245-2271

[49] C.F. Niordson; P. Redanz Size-effects in plane strain sheet-necking, J. Mech. Phys. Solids, Volume 52 (2004), pp. 2431-2454

[50] C.F. Niordson; V. Tvergaard Instabilities in power law gradient hardening materials, Int. J. Solids Struct., Volume 42 (2005), pp. 2559-2573

[51] A.G. Evans; J.W. Hutchinson A critical assessment of theories of strain gradient plasticity, Acta Mater., Volume 57 (2009), pp. 1675-1688

[52] R.M. McMeeking; J.R. Rice Finite-element formulations for problems of large elastic–plastic deformation, Int. J. Solids Struct., Volume 11 (1975), pp. 601-616

[53] E.O. Hall The deformation and ageing of mild steel: III. Discussion of results, Proc. Phys. Soc. B, Volume 64 (1951), pp. 747-753

[54] A.S. Argon Strengthening Mechanisms in Crystal Plasticity, Oxford Series on Materials Modelling, Oxford University Press, 2008

[55] O. Bouaziz; T. Iung; M. Kandel; C. Lecomte Physical modelling of microstructure and mechanical properties of dual-phase steel, J. Phys. IV France, Volume 11 (2001) no. PR4, pp. 223-231

[56] S. Takaki; K. Kawasaki; Y. Kimura Mechanical properties of ultra fine grained steels, J. Mater. Proc. Tech., Volume 117 (2001), pp. 359-363

[57] D. Jia; K.T. Ramesh; E. Ma Effects of nanocrystalline and ultrafine grain sizes on constitutive behavior and shear bands in iron, Acta Mater., Volume 51 (2003), pp. 3495-3509

[58] N. Tsuji; Y. Ito; Y. Saito; Y. Minamino Strength and ductility of ultrafine grained aluminum and iron produced by ARB and annealing, Scripta Mater., Volume 47 (2002), pp. 893-899

[59] O. Bouaziz; A. Aouafi; S. Allain Effect of grain refinement on the mechanical behaviour of ferritic steels: Evolution of isotropic hardening and kinematic hardening, Mater. Sci. Forum, Volume 584–586 (2008), pp. 605-609

[60] C.Y. Yu; P.W. Kao; C.P. Chang Transition of tensile deformation behaviors in ultrafine-grained aluminum, Acta Mater., Volume 53 (2005), pp. 4019-4028

[61] G.R. Speich Fundamentals of Dual-Phase Steels, AIME, Warrendale, PA, 1981

[62] M. Delincé; P.J. Jacques; Y. Bréchet; J.D. Embury; M.G.D. Geers; T. Pardoen Microstructure based strain hardening model for the uniaxial flow properties of ultrafine grained dual phase steels, Acta Mater., Volume 55 (2007), pp. 2337-2350

[63] M. Delincé; P.J. Jacques; T. Pardoen Separation of size-dependent strengthening contributions in fine grained dual phase steels by nanoindentation, Acta Mater., Volume 54 (2006), pp. 3395-3404

[64] G. Krauss Deformation and fracture in martensitic carbon steels tempered at low temperatures, Metall. Mater. Trans. B, Volume 32 (2001), pp. 205-221

[65] S. Cobo, O. Bouaziz, Investigations and modelling of the work hardening of as quenched martensite, in: Proceedings of New Developments on Metallurgy and Applications of High Strength Steels, Buenos Aires, 2008, pp. 909–918.

[66] P. Jacques; Q. Furnémont; T. Pardoen; F. Delannay On the role of martensitic transformation on damage and cracking resistance in TRIP-assisted multiphase steels, Acta Mater., Volume 49 (2001) no. 1, pp. 139-152

[67] C. Herrera; D. Ponge; D. Raabe Design of a novel Mn-based 1 GPa duplex stainless TRIP steel with 60% ductility by a reduction of austenite stability, Acta Mater., Volume 59 (2011), pp. 4653-4664

[68] L. Delannay; P.J. Jacques; T. Pardoen Prediction of the plastic flow of TRIP-aided multiphase steel based on an incremental mean-field model, Int. J. Solids Struct., Volume 45 (2008), pp. 1825-1843

[69] F.D. Fischer; G. Reisner A criterion for the martensitic transformation of a microregion in an elastic plastic material, Acta Mater., Volume 46 (1998), pp. 2095-2102

[70] V.I. Levitas Thermomechanical theory of martensitic phase transformations in inelastic materials, Int. J. Solids Struct., Volume 35 (1998), pp. 889-940

[71] T. Van Rompaey; F. Lani; P. Jacques; B. Blanpain; P. Wollants; T. Pardoen 3D embedded cell model for the martensitic transformation in TRIP-assisted multiphase steels, Metal. Mater. Trans. A, Volume 37 (2006), pp. 99-107

[72] T. Pardoen; D. Dumont; A. Deschamps; Y. Bréchet Grain boundary versus transgranular ductile failure, J. Mech. Phys. Solids, Volume 51 (2003), pp. 637-665

[73] T. Pardoen; F. Scheyvaerts; A. Simar; C. Tekoğlu; P.R. Onck Multiscale modeling of ductile failure in metallic alloys, C. R. Physique, Volume 11 (2010), pp. 326-345

[74] D. Steglich; W. Brocks; J. Heerens; T. Pardoen Anisotropic ductile damage modelling of Al2024 alloys, Eng. Fract. Mech., Volume 75 (2008), pp. 3692-3706

  • Layal Chamma; Jean-Marc Pipard; Artem Arlazarov; Thiebaud Richeton; Stéphane Berbenni A plasticity-induced internal length mean field model based on statistical analyses of EBSD and nanoindentation data, International Journal of Plasticity, Volume 189 (2025), p. 104327 | DOI:10.1016/j.ijplas.2025.104327
  • Duc-Vinh Nguyen; Mohamed Jebahi; Victor Champaney; Francisco Chinesta Identification of material parameters in low-data limit: application to gradient-enhanced continua, International Journal of Material Forming, Volume 17 (2024) no. 1 | DOI:10.1007/s12289-023-01807-7
  • C. Sénac Mechanisms and micromechanics of intergranular ductile fracture, International Journal of Solids and Structures, Volume 301 (2024), p. 112951 | DOI:10.1016/j.ijsolstr.2024.112951
  • Yinghan Ma; Chenglu Liu; Kesong Miao; Hao Wu; Rengeng Li; Xuewen Li; Guohua Fan Effects of cooling rate and cryogenic temperature on the mechanical properties and deformation characteristics of an Al-Mg-Si-Fe-Cr alloy, Journal of Alloys and Compounds, Volume 947 (2023), p. 169559 | DOI:10.1016/j.jallcom.2023.169559
  • Mingyang Chen; Shengdan Liu; Kezhun He; Xu Zheng; Guilong Jia The effect of precipitate-free zone on mechanical properties in Al-Zn-Mg-Cu aluminum alloy: Strain-induced back stress strengthening, Journal of Alloys and Compounds, Volume 969 (2023), p. 172426 | DOI:10.1016/j.jallcom.2023.172426
  • Mingjun Yang; Zhixiang Ruan; Han Lin; Kai Li; Mingbo Yang; Zhixiu Wang; Xinyue Lan; Yi Xie; Yao Xiao; Qiao Yan; Ruanfei Li; Yong Du Quantified effect of quench rate on the microstructures and mechanical properties of an Al–Mg–Si alloy, Journal of Materials Research and Technology, Volume 24 (2023), p. 6753 | DOI:10.1016/j.jmrt.2023.04.178
  • Sutao Han; Matthieu B. Lezaack; Grzegorz Pyka; Nelson Netto; Aude Simar; Magd Abdel Wahab; Florent Hannard On the Competition between Intergranular and Transgranular Failure within 7xxx Al Alloys with Tailored Microstructures, Materials, Volume 16 (2023) no. 10, p. 3770 | DOI:10.3390/ma16103770
  • Mingyang Chen; Shengdan Liu; Kezhun He; Xu Zheng; Yong Zhang; Jianguo Tang; Lingying Ye Hydrogen-induced failure in a partially-recrystallized Al-Zn-Mg-Cu alloy with different aging conditions: Influence of deformation behavior dominated by microstructures, Materials Design, Volume 233 (2023), p. 112199 | DOI:10.1016/j.matdes.2023.112199
  • Xinyu Huan; Chenglu Liu; Kesong Miao; Hao Wu; Rengeng Li; Xuewen Li; Guohua Fan In-situ EBSD study on the microstructure evolution of an Al–Mg–Si–Fe alloy with different precipitation free zones during tension at cryogenic and ambient temperatures, Materials Science and Engineering: A, Volume 873 (2023), p. 145029 | DOI:10.1016/j.msea.2023.145029
  • M. Mansouri Arani; N.S. Ramesh; X. Wang; N. Parson; M. Li; W.J. Poole The localization of plastic deformation in the precipitate free zone of an Al-Mg-Si-Mn alloy, Acta Materialia, Volume 231 (2022), p. 117872 | DOI:10.1016/j.actamat.2022.117872
  • Sébastien Y.P. Allain; Irina Pushkareva; Julien Teixeira; Mohamed Gouné; Colin Scott Dual-Phase Steels: The First Family of Advanced High Strength Steels, Encyclopedia of Materials: Metals and Alloys (2022), p. 37 | DOI:10.1016/b978-0-12-819726-4.00057-0
  • Mojtaba Mansouri Arani; X. Wang; N. C. Parson; W. J. Poole Quantification of Plastic Strain in the Precipitate Free Zone of Naturally Aged Al–Mg–Si Alloys, Light Metals 2022 (2022), p. 241 | DOI:10.1007/978-3-030-92529-1_33
  • Bernard Sonon; Karim Ehab Moustafa Kamel; Thierry J. Massart Advanced geometry representations and tools for microstructural and multiscale modeling, Volume 54 (2021), p. 1 | DOI:10.1016/bs.aams.2020.12.001
  • Alexandre Mathevon; Damien Fabrègue; Véronique Massardier; Sophie Cazottes; Philippe Rocabois; Michel Perez Investigation and mean-field modelling of microstructural mechanisms driving the tensile properties of dual-phase steels, Materials Science and Engineering: A, Volume 822 (2021), p. 141532 | DOI:10.1016/j.msea.2021.141532
  • Komlan S. Djaka; Stéphane Berbenni; Vincent Taupin; Ricardo A. Lebensohn A FFT-based numerical implementation of mesoscale field dislocation mechanics: Application to two-phase laminates, International Journal of Solids and Structures, Volume 184 (2020), p. 136 | DOI:10.1016/j.ijsolstr.2018.12.027
  • Karim Ismail; Astrid Perlade; Pascal J. Jacques; Thomas Pardoen; Laurence Brassart Impact of second phase morphology and orientation on the plastic behavior of dual-phase steels, International Journal of Plasticity, Volume 118 (2019), p. 130 | DOI:10.1016/j.ijplas.2019.02.005
  • Sébastien Y.P. Allain; Amandine Roth; Olivier Bouaziz; Enrico D’Eramo Microstructure-based behavior law for globular pearlitic steels, Journal of Materials Research and Technology, Volume 8 (2019) no. 3, p. 3373 | DOI:10.1016/j.jmrt.2019.03.014
  • T. Yalçinkaya; İ. Özdemir; A.O. Firat Inter-granular cracking through strain gradient crystal plasticity and cohesive zone modeling approaches, Theoretical and Applied Fracture Mechanics, Volume 103 (2019), p. 102306 | DOI:10.1016/j.tafmec.2019.102306
  • Emil Christiansen; Calin Daniel Marioara; Knut Marthinsen; Odd Sture Hopperstad; Randi Holmestad Lattice rotations in precipitate free zones in an Al-Mg-Si alloy, Materials Characterization, Volume 144 (2018), p. 522 | DOI:10.1016/j.matchar.2018.08.002
  • Anup Basak; Anurag Gupta Influence of a mobile incoherent interface on the strain-gradient plasticity of a thin slab, International Journal of Solids and Structures, Volume 108 (2017), p. 126 | DOI:10.1016/j.ijsolstr.2016.12.004
  • M.K. Hatami; T. Pardoen; G. Lacroix; P. Berke; P.J. Jacques; T.J. Massart Towards ultra-high ductility TRIP-assisted multiphase steels controlled by strain gradient plasticity effects, Journal of the Mechanics and Physics of Solids, Volume 98 (2017), p. 201 | DOI:10.1016/j.jmps.2016.09.006
  • André Pineau; A. Amine Benzerga; Thomas Pardoen Failure of metals III: Fracture and fatigue of nanostructured metallic materials, Acta Materialia, Volume 107 (2016), p. 508 | DOI:10.1016/j.actamat.2015.07.049
  • Fundamentals of Cold Spray Coating Formation, Cold Gas Dynamic Spray (2016), p. 153 | DOI:10.1201/b19486-9
  • Anup Basak; Anurag Gupta Plasticity in multi-phase solids with incoherent interfaces and junctions, Continuum Mechanics and Thermodynamics, Volume 28 (2016) no. 1-2, p. 423 | DOI:10.1007/s00161-015-0441-6
  • Qingquan Lai; Laurence Brassart; Olivier Bouaziz; Mohamed Gouné; Marc Verdier; Guillaume Parry; Astrid Perlade; Yves Bréchet; Thomas Pardoen Influence of martensite volume fraction and hardness on the plastic behavior of dual-phase steels: Experiments and micromechanical modeling, International Journal of Plasticity, Volume 80 (2016), p. 187 | DOI:10.1016/j.ijplas.2015.09.006
  • M. Khadyko; C.D. Marioara; I.G. Ringdalen; S. Dumoulin; O.S. Hopperstad Deformation and strain localization in polycrystals with plastically heterogeneous grains, International Journal of Plasticity, Volume 86 (2016), p. 128 | DOI:10.1016/j.ijplas.2016.08.005
  • S.Y.P. Allain; O. Bouaziz; I. Pushkareva; C.P. Scott Towards the microstructure design of DP steels: A generic size-sensitive mean-field mechanical model, Materials Science and Engineering: A, Volume 637 (2015), p. 222 | DOI:10.1016/j.msea.2015.04.017
  • M. Fourmeau; C.D. Marioara; T. Børvik; A. Benallal; O.S. Hopperstad A study of the influence of precipitate-free zones on the strain localization and failure of the aluminium alloy AA7075-T651, Philosophical Magazine, Volume 95 (2015) no. 28-30, p. 3278 | DOI:10.1080/14786435.2015.1040099
  • Carl F.O. Dahlberg; Jonas Faleskog Strain gradient plasticity analysis of the influence of grain size and distribution on the yield strength in polycrystals, European Journal of Mechanics - A/Solids, Volume 44 (2014), p. 1 | DOI:10.1016/j.euromechsol.2013.09.004

Cité par 29 documents. Sources : Crossref

Commentaires - Politique