Comptes Rendus
Interface controlled plastic flow modelled by strain gradient plasticity theory
Comptes Rendus. Mécanique, Volume 340 (2012) no. 4-5, pp. 247-260.

The resistance to plastic flow in metals is often dominated by the presence of interfaces which interfere with dislocation nucleation and motion. Interfaces can be static such as grain and phase boundaries or dynamic such as new boundaries resulting from a phase transformation. The interface can be hard and fully impenetrable to dislocations, or soft and partly or fully transparent. The interactions between dislocations and interfaces constitute the main mechanism controlling the strength and strain hardening capacity of many metallic systems especially in very fine microstructures with a high density of interfaces. A phenomenological strain gradient plasticity theory is used to introduce, within a continuum framework, higher order boundary conditions which empirically represent the effect of interfaces on plastic flow. The strength of the interfaces can evolve during the loading in order to enrich the description of their response. The behaviour of single and dual phase steels, with possible TRIP effect, accounting for the interactions with static and dynamic boundaries, is addressed, with a specific focus on the size dependent strength and ductility balance. The size dependent response of weak precipitate free zones surrounding grain boundaries is treated as an example involving more than one microstructural length scale.

Publié le :
DOI : 10.1016/j.crme.2012.02.008
Mots clés : Constitutive models, Strength, Ductility, Strain gradient plasticity, Size effects, Interfaces
Thomas Pardoen 1 ; Thierry J. Massart 2

1 Institute of Mechanics, Materials and Civil Engineering, Université catholique de Louvain, B-1348 Louvain-la-Neuve, Belgium
2 Université Libre de Bruxelles (ULB), Building, Architecture & Town Planning Dept. (BATir), CP 194/02, Avenue F.D. Roosevelt 50, B-1050 Bruxelles, Belgium
@article{CRMECA_2012__340_4-5_247_0,
     author = {Thomas Pardoen and Thierry J. Massart},
     title = {Interface controlled plastic flow modelled by strain gradient plasticity theory},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {247--260},
     publisher = {Elsevier},
     volume = {340},
     number = {4-5},
     year = {2012},
     doi = {10.1016/j.crme.2012.02.008},
     language = {en},
}
TY  - JOUR
AU  - Thomas Pardoen
AU  - Thierry J. Massart
TI  - Interface controlled plastic flow modelled by strain gradient plasticity theory
JO  - Comptes Rendus. Mécanique
PY  - 2012
SP  - 247
EP  - 260
VL  - 340
IS  - 4-5
PB  - Elsevier
DO  - 10.1016/j.crme.2012.02.008
LA  - en
ID  - CRMECA_2012__340_4-5_247_0
ER  - 
%0 Journal Article
%A Thomas Pardoen
%A Thierry J. Massart
%T Interface controlled plastic flow modelled by strain gradient plasticity theory
%J Comptes Rendus. Mécanique
%D 2012
%P 247-260
%V 340
%N 4-5
%I Elsevier
%R 10.1016/j.crme.2012.02.008
%G en
%F CRMECA_2012__340_4-5_247_0
Thomas Pardoen; Thierry J. Massart. Interface controlled plastic flow modelled by strain gradient plasticity theory. Comptes Rendus. Mécanique, Volume 340 (2012) no. 4-5, pp. 247-260. doi : 10.1016/j.crme.2012.02.008. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2012.02.008/

[1] E. Arzt; G. Dehm; P. Gumbsch; O. Kraft; D. Weiss Interface controlled plasticity in metals: dispersion hardening and thin film deformation, Prog. Mater. Sci., Volume 46 (2001), pp. 283-307

[2] M.A. Meyers; A. Mishra; D.J. Benson Mechanical properties of nanocrystalline materials, Prog. Mater. Sci., Volume 51 (2006), pp. 427-556

[3] M. Dao; L. Lu; R.J. Asaro; J.T.M. De Hosson; E. Ma Toward a quantitative understanding of mechanical behavior of nanocrystalline metals, Acta Mater., Volume 55 (2007), pp. 4041-4065

[4] L. Zhu; H. Ruan; X. Li; M. Dao; H. Gao; J. Lu Modeling grain size dependent optimal twin spacing for achieving ultimate high strength and related high ductility in nanotwinned metals, Acta Mater., Volume 59 (2011), pp. 5544-5557

[5] N.A. Fleck; J.W. Hutchinson Strain gradient plasticity, Adv. Appl. Mech., Volume 33 (1997), pp. 295-361

[6] A. Needleman; J. Gil Sevillano Preface to the viewpoint set on: geometrically necessary dislocations and size dependent plasticity, Scripta Mater., Volume 48 (2003), pp. 109-111

[7] P. Gudmundson A unified treatment of strain gradient plasticity, J. Mech. Phys. Solids, Volume 52 (2004), pp. 1379-1406

[8] M.G.D. Geers; W.A.M. Brekelmans; C.J. Bayley Second-order crystal plasticity: internal stress effects and cyclic loading, Modell. Simul. Mater. Sci. Eng., Volume 15 (2007), pp. 133-145

[9] N.A. Fleck; J.R. Willis A mathematical basis for strain-gradient plasticity theory. Part II: Tensorial plastic multiplier, J. Mech. Phys. Solids, Volume 57 (2009), pp. 1045-1057

[10] M.E. Gurtin; L. Anand Nanocrystalline grain boundaries that slip and separate: A gradient theory that accounts for grain-boundary stress and conditions at a triple-junction, J. Mech. Phys. Solids, Volume 56 (2008), pp. 184-199

[11] R.K. Abu Al-Rub; G.Z. Voyiadjis A physically based gradient plasticity theory, Int. J. Plasticity, Volume 22 (2006), pp. 654-684

[12] W.A.T. Clark; R.H. Wagoner; Z.Y. Shen; T.C. Lee; I.M. Robertson; H.K. Birnbaum On the criteria for slip transmission across interfaces in polycrystals, Scripta Metall. Mater., Volume 26 (1992), pp. 203-206

[13] H. Van Swygenhoven; P.M. Derlet; A.G. Froseth Nucleation and propagation of dislocations in nanocrystalline fcc metals, Acta Mater., Volume 54 (2006), pp. 1975-1983

[14] A. Ma; F. Roters; D. Raabe On the consideration of interactions between dislocations and grain boundaries in crystal plasticity finite element modeling – Theory, experiments, and simulations, Acta Mater., Volume 54 (2006), pp. 2181-2194

[15] T. Gorkaya; K.D. Molodov; D.A. Molodov; G. Gottstein Concurrent grain boundary motion and grain rotation under an applied stress, Acta Mater., Volume 59 (2011), pp. 5674-5680

[16] F. Mompiou; M. Legros; D. Caillard SMIG model: A new geometrical model to quantify grain boundary-based plasticity, Acta Mater., Volume 58 (2010), pp. 3676-3689

[17] J.W. Christian; S. Mahajan Deformation twinning, Prog. Mater. Sci., Volume 39 (1995), pp. 1-157

[18] K. Lu; L. Lu; S. Suresh Strengthening materials by engineering coherent internal boundaries at the nanoscale, Science, Volume 324 (2009), pp. 349-352

[19] Z.X. Wu; Y.W. Zhang; D.J. Srolovitz Dislocation–twin interaction mechanisms for ultrahigh strength and ductility in nanotwinned metals, Acta Mater., Volume 57 (2009), pp. 4508-4518

[20] H. Idrissi; M.S. Colla; B. Wang; D. Schrijvers; J.P. Raskin; T. Pardoen Strength and ductility of nanocrystalline freestanding palladium films, Adv. Mater., Volume 23 (2011) no. 18, pp. 2119-2122

[21] O. Bouaziz; S. Allain; C. Scott Effect of grain and twin boundaries on the hardening mechanisms of twinning-induced plasticity steels, Scripta Mater., Volume 58 (2008), pp. 484-487

[22] J. Gil Sevillano An alternative model for the strain hardening of FCC alloys that twin, validated for twinning-induced plasticity steel, Scripta Mater., Volume 60 (2009), pp. 336-339

[23] H. Idrissi; K. Renard; L. Ryelandt; D. Schryvers; P.J. Jacques On the mechanism of twin formation in Fe–Mn–C TWIP steels, Acta Mater., Volume 58 (2010), pp. 2464-2476

[24] R.G. Stringfellow; D.M. Parks; G.B. Olson A constitutive model for transformation plasticity accompanying strain-induced martensitic transformations in metastable austenitic steels, Acta Metall. Mater., Volume 40 (1992), pp. 1703-1716

[25] F.D. Fischer; G. Reisner; E. Werner; K. Tanaka; G. Cailletaud; T. Antretter A new view on transformation induced plasticity (TRIP), Int. J. Plasticity, Volume 16 (2000), pp. 723-748

[26] F. Lani; Q. Furnémont; T. Van Rompaey; F. Delannay; P.J. Jacques; T. Pardoen Multiscale mechanics of TRIP-assisted multiphase steels: II. Micromechanical modelling, Acta Mater., Volume 55 (2007), pp. 3695-3705

[27] P.J. Jacques; Q. Furnemont; S. Godet; T. Pardoen; K.T. Conlon; F. Delannay Micromechanical characterisation of TRIP-assisted multiphase steels by in situ neutron diffraction, Phil. Mag., Volume 86 (2006), pp. 2371-2392

[28] V. Gerold Precipitation hardening, Dislocations in Solids, North-Holland Publishing Company, Amsterdam, 1979

[29] A. Simar; Y. Bréchet; B. de Meester; A. Denquin; T. Pardoen Modeling microstructures and local tensile properties of friction stir welds in aluminum alloy 6005A-T6, Acta Mater., Volume 55 (2007), pp. 6133-6143

[30] D. Dumont; A. Deschamps; Y. Bréchet A model for predicting fracture mode and toughness in 7000 series aluminium alloys, Acta Mater., Volume 52 (2004), pp. 2529-2540

[31] T.F. Morgeneyer; M.J. Starink; S.C. Wang; I. Sinclair Quench sensitivity of toughness in an Al alloy: Direct observation and analysis of failure initiation at the precipitate-free zone, Acta Mater., Volume 56 (2008), pp. 2872-2884

[32] T. Krol; D. Baither; E. Nembach The formation of precipitate free zones along grain boundaries in a superalloy and the ensuing effects on its plastic deformation, Acta Mater., Volume 52 (2004), pp. 2095-2108

[33] J.P. Hirth; J. Lothe Theory of Dislocations, Wiley, 1982 (1st edition, McGraw–Hill, 1968)

[34] L.B. Freund; S. Suresh Thin Film Materials, Cambridge University Press, 2003 (ISBN: 0521822815)

[35] S. Puri; A. Das; A. Acharya Mechanical response of multicrystalline thin films in mesoscale field dislocation mechanics, J. Mech. Phys. Solids, Volume 59 (2011) no. 11, pp. 2400-2417

[36] C. Brugger; M. Coulombier; T.J. Massart; J.-P. Raskin; T. Pardoen Strain gradient plasticity analysis of the strength and ductility of thin metallic films using enriched interface model, Acta Mater., Volume 58 (2010), pp. 4940-4949

[37] N.A. Fleck; G.M. Muller; M.F. Ashby; J.W. Hutchinson Strain gradient plasticity: theory and experiment, Acta Metall. Mater., Volume 42 (1994), pp. 475-487

[38] J.S. Stölken; A.G. Evans A microbend test method for measuring the plasticity length scale, Acta Mater., Volume 46 (1998), pp. 5109-5115

[39] M.E. Gurtin A theory of grain boundaries that accounts automatically for grain misorientation and grain-boundary orientation, J. Mech. Phys. Solids, Volume 56 (2008), pp. 640-662

[40] K.E. Aifantis; J.R. Willis Scale effects induced by strain-gradient plasticity and interfacial resistance in periodic and randomly heterogeneous media, Mech. Mater., Volume 38 (2006), pp. 702-716

[41] N.A. Fleck; J.R. Willis A mathematical basis for strain-gradient plasticity theory – Part I: Scalar plastic multiplier, J. Mech. Phys. Solids, Volume 57 (2009), pp. 161-177

[42] U. Borg; C.F. Niordson; J.W. Kysar Size effects on void growth in single crystals with distributed voids, Int. J. Plasticity, Volume 24 (2008), pp. 688-701

[43] M.I. Hussein; U. Borg; C.F. Niordson; V.S. Deshpande Plasticity size effects in voided crystals, J. Mech. Phys. Solids, Volume 56 (2008), pp. 114-131

[44] L. Mazzoni-Leduc; T. Pardoen; T.J. Massart Strain gradient plasticity analysis of transformation induced plasticity in multiphase steels, Int. J. Solids Struct., Volume 45 (2008), pp. 5397-5418

[45] L. Mazzoni-Leduc; T. Pardoen; T.J. Massart Strain gradient plasticity analysis of the size effects associated to the transformation strain in TRIP steels, Eur. J. Mech. A – Solids, Volume 29 (2010), pp. 132-142

[46] T.J. Massart; T. Pardoen Strain gradient plasticity analysis of the size dependent strength and ductility in single phase metals with evolving grain boundary confinement, Acta Mater., Volume 58 (2010), pp. 5768-5781

[47] T.J. Massart, T. Pardoen, Strain gradient plasticity analysis of hardening in dual phase steels with enhanced higher order interface conditions, submitted for publication.

[48] N.A. Fleck; J.W. Hutchinson A reformulation of strain gradient plasticity, J. Mech. Phys. Solids, Volume 49 (2001), pp. 2245-2271

[49] C.F. Niordson; P. Redanz Size-effects in plane strain sheet-necking, J. Mech. Phys. Solids, Volume 52 (2004), pp. 2431-2454

[50] C.F. Niordson; V. Tvergaard Instabilities in power law gradient hardening materials, Int. J. Solids Struct., Volume 42 (2005), pp. 2559-2573

[51] A.G. Evans; J.W. Hutchinson A critical assessment of theories of strain gradient plasticity, Acta Mater., Volume 57 (2009), pp. 1675-1688

[52] R.M. McMeeking; J.R. Rice Finite-element formulations for problems of large elastic–plastic deformation, Int. J. Solids Struct., Volume 11 (1975), pp. 601-616

[53] E.O. Hall The deformation and ageing of mild steel: III. Discussion of results, Proc. Phys. Soc. B, Volume 64 (1951), pp. 747-753

[54] A.S. Argon Strengthening Mechanisms in Crystal Plasticity, Oxford Series on Materials Modelling, Oxford University Press, 2008

[55] O. Bouaziz; T. Iung; M. Kandel; C. Lecomte Physical modelling of microstructure and mechanical properties of dual-phase steel, J. Phys. IV France, Volume 11 (2001) no. PR4, pp. 223-231

[56] S. Takaki; K. Kawasaki; Y. Kimura Mechanical properties of ultra fine grained steels, J. Mater. Proc. Tech., Volume 117 (2001), pp. 359-363

[57] D. Jia; K.T. Ramesh; E. Ma Effects of nanocrystalline and ultrafine grain sizes on constitutive behavior and shear bands in iron, Acta Mater., Volume 51 (2003), pp. 3495-3509

[58] N. Tsuji; Y. Ito; Y. Saito; Y. Minamino Strength and ductility of ultrafine grained aluminum and iron produced by ARB and annealing, Scripta Mater., Volume 47 (2002), pp. 893-899

[59] O. Bouaziz; A. Aouafi; S. Allain Effect of grain refinement on the mechanical behaviour of ferritic steels: Evolution of isotropic hardening and kinematic hardening, Mater. Sci. Forum, Volume 584–586 (2008), pp. 605-609

[60] C.Y. Yu; P.W. Kao; C.P. Chang Transition of tensile deformation behaviors in ultrafine-grained aluminum, Acta Mater., Volume 53 (2005), pp. 4019-4028

[61] G.R. Speich Fundamentals of Dual-Phase Steels, AIME, Warrendale, PA, 1981

[62] M. Delincé; P.J. Jacques; Y. Bréchet; J.D. Embury; M.G.D. Geers; T. Pardoen Microstructure based strain hardening model for the uniaxial flow properties of ultrafine grained dual phase steels, Acta Mater., Volume 55 (2007), pp. 2337-2350

[63] M. Delincé; P.J. Jacques; T. Pardoen Separation of size-dependent strengthening contributions in fine grained dual phase steels by nanoindentation, Acta Mater., Volume 54 (2006), pp. 3395-3404

[64] G. Krauss Deformation and fracture in martensitic carbon steels tempered at low temperatures, Metall. Mater. Trans. B, Volume 32 (2001), pp. 205-221

[65] S. Cobo, O. Bouaziz, Investigations and modelling of the work hardening of as quenched martensite, in: Proceedings of New Developments on Metallurgy and Applications of High Strength Steels, Buenos Aires, 2008, pp. 909–918.

[66] P. Jacques; Q. Furnémont; T. Pardoen; F. Delannay On the role of martensitic transformation on damage and cracking resistance in TRIP-assisted multiphase steels, Acta Mater., Volume 49 (2001) no. 1, pp. 139-152

[67] C. Herrera; D. Ponge; D. Raabe Design of a novel Mn-based 1 GPa duplex stainless TRIP steel with 60% ductility by a reduction of austenite stability, Acta Mater., Volume 59 (2011), pp. 4653-4664

[68] L. Delannay; P.J. Jacques; T. Pardoen Prediction of the plastic flow of TRIP-aided multiphase steel based on an incremental mean-field model, Int. J. Solids Struct., Volume 45 (2008), pp. 1825-1843

[69] F.D. Fischer; G. Reisner A criterion for the martensitic transformation of a microregion in an elastic plastic material, Acta Mater., Volume 46 (1998), pp. 2095-2102

[70] V.I. Levitas Thermomechanical theory of martensitic phase transformations in inelastic materials, Int. J. Solids Struct., Volume 35 (1998), pp. 889-940

[71] T. Van Rompaey; F. Lani; P. Jacques; B. Blanpain; P. Wollants; T. Pardoen 3D embedded cell model for the martensitic transformation in TRIP-assisted multiphase steels, Metal. Mater. Trans. A, Volume 37 (2006), pp. 99-107

[72] T. Pardoen; D. Dumont; A. Deschamps; Y. Bréchet Grain boundary versus transgranular ductile failure, J. Mech. Phys. Solids, Volume 51 (2003), pp. 637-665

[73] T. Pardoen; F. Scheyvaerts; A. Simar; C. Tekoğlu; P.R. Onck Multiscale modeling of ductile failure in metallic alloys, C. R. Physique, Volume 11 (2010), pp. 326-345

[74] D. Steglich; W. Brocks; J. Heerens; T. Pardoen Anisotropic ductile damage modelling of Al2024 alloys, Eng. Fract. Mech., Volume 75 (2008), pp. 3692-3706

Cité par Sources :

Commentaires - Politique


Ces articles pourraient vous intéresser

New developments of advanced high-strength steels for automotive applications

Jean-Hubert Schmitt; Thierry Iung

C. R. Phys (2018)


Lighter structures for transports: The role of innovation in metallurgy

Alexis Deschamps; Guilhem Martin; Rémy Dendievel; ...

C. R. Phys (2017)


Multiscale modeling of ductile failure in metallic alloys

Thomas Pardoen; Florence Scheyvaerts; Aude Simar; ...

C. R. Phys (2010)