Comptes Rendus
Effective elastic properties of nanocomposites using a novel atomistic–continuum interphase model
Comptes Rendus. Mécanique, Volume 340 (2012) no. 4-5, pp. 296-306.

We have introduced the concept of interphase and revised classical micromechanics to predict the effective elastic properties of heterogeneous materials containing nano-inhomogeneities. An interphase is described as an additional phase between the matrix and inhomogeneity whose constitutive properties are derived from atomistic simulations and then incorporated in a micromechanics model to compute effective properties of nanocomposites. This scale transition approach bridges the gap between discrete atomic level interactions and continuum mechanics. An advantage of this approach is that it combines atomistic with continuum models that consider inhomogeneity and interphase morphology. It thereby enables us to account simultaneously for both the shape and the anisotropy of a nano-inhomogeneity and interphase at the continuum level when we compute materialʼs overall properties. In so doing, it frees us from making any assumptions about the interface characteristics between matrix and the nano-inhomogeneity.

Publié le :
DOI : 10.1016/j.crme.2012.02.012
Mots clés : Interphase model, Interface properties, Anisotropic nanocomposite, Atomistic simulations, Micromechanics
Bhasker Paliwal 1, 2 ; Mohammed Cherkaoui 1, 2 ; Omar Fassi-Fehri 3

1 G.W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
2 Georgia Institute of Technology, CNRS (Unite Mixte Internationale UMI 2958), 57070 Metz, France
3 Moroccan Academy of Sciences and Technologies, 225 Mohamed Belhassen El Ouazzani Avenue, Ambassador District – Souissi, Rabat, Morocco
@article{CRMECA_2012__340_4-5_296_0,
     author = {Bhasker Paliwal and Mohammed Cherkaoui and Omar Fassi-Fehri},
     title = {Effective elastic properties of nanocomposites using a novel atomistic{\textendash}continuum interphase model},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {296--306},
     publisher = {Elsevier},
     volume = {340},
     number = {4-5},
     year = {2012},
     doi = {10.1016/j.crme.2012.02.012},
     language = {en},
}
TY  - JOUR
AU  - Bhasker Paliwal
AU  - Mohammed Cherkaoui
AU  - Omar Fassi-Fehri
TI  - Effective elastic properties of nanocomposites using a novel atomistic–continuum interphase model
JO  - Comptes Rendus. Mécanique
PY  - 2012
SP  - 296
EP  - 306
VL  - 340
IS  - 4-5
PB  - Elsevier
DO  - 10.1016/j.crme.2012.02.012
LA  - en
ID  - CRMECA_2012__340_4-5_296_0
ER  - 
%0 Journal Article
%A Bhasker Paliwal
%A Mohammed Cherkaoui
%A Omar Fassi-Fehri
%T Effective elastic properties of nanocomposites using a novel atomistic–continuum interphase model
%J Comptes Rendus. Mécanique
%D 2012
%P 296-306
%V 340
%N 4-5
%I Elsevier
%R 10.1016/j.crme.2012.02.012
%G en
%F CRMECA_2012__340_4-5_296_0
Bhasker Paliwal; Mohammed Cherkaoui; Omar Fassi-Fehri. Effective elastic properties of nanocomposites using a novel atomistic–continuum interphase model. Comptes Rendus. Mécanique, Volume 340 (2012) no. 4-5, pp. 296-306. doi : 10.1016/j.crme.2012.02.012. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2012.02.012/

[1] Y. Li; A.M. Waas; E.A. Aruda A closed-form, hierarchical, multi-interphase model for composites – Derivation, verification and application to nanocomposites, Journal of the Mechanics and Physics of Solids, Volume 59 (2010) no. 1, pp. 43-63

[2] M.J. Demkowicz; R.G. Hoagland; J.P. Hirth Interface structure and radiation damage resistance in Cu–Nb multilayer nanocomposites, Physical Review Letters, Volume 100 (2008)

[3] R. Dingreville; J. Qu; M. Cherkaoui Surface free energy and its effect on the elastic behavior of nano-sized particles, wires and films, Journal of the Mechanics and Physics of Solids, Volume 53 (2005), pp. 1827-1854

[4] P. Sharma; S. Ganti Size-dependent Eshelbyʼs tensor for embedded nano-inclusions incorporating surface/interface energies, Journal of Applied Mechanics, Volume 71 (2004), pp. 663-671

[5] H. Duan et al. Size-dependent effective elastic constants of solids containing nano-inhomogeneities with interface stress, Journal of the Mechanics and Physics of Solids, Volume 53 (2005), pp. 1574-1596

[6] C. Lim; Z. Li; L. He Size dependent, non-uniform elastic field inside a nano-scale spherical inclusion due to interface stress, International Journal of Solids and Structures, Volume 43 (2006), pp. 5055-5065

[7] Z.P. Huang; L. Sun Size-dependent effective properties of a heterogeneous material with interface energy effect: From finite deformation theory to infinitesimal strain analysis, Acta Mechanica, Volume 190 (2007), pp. 151-163

[8] P. Sharma; L. Wheeler Size-dependent elastic state of ellipsoidal nano-inclusions incorporating surface/interface tension, Journal of Applied Mechanics, Volume 74 (2007), pp. 447-454

[9] S.G. Mogilevskaya; S.L. Crouch; H.K. Stolarski Multiple interacting circular nano-inhomogeneities with surface/interface effects, Journal of the Mechanics and Physics of Solids, Volume 56 (2008), pp. 2298-2327

[10] H.L. Quang; L. He Size-dependent effective thermoelastic properties of nanocomposites with spherically anisotropic phases, Journal of the Mechanics and Physics of Solids, Volume 55 (2007) no. 9, pp. 1899-1931

[11] R. Dingreville, Modeling and characterization of the elastic behavior of interfaces in nanostructured materials: from an atomistic description to a continuum approach, W. George Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, 2007.

[12] V.B. Shenoy Atomistic calculations of elastic properties of metallic fcc crystal surfaces, Physical Review B, Volume 71 (2005) no. 9, p. 094104-1-094104-11

[13] R. Xia et al. Surface effects on the mechanical properties of nanoporous materials, Nanotechnology, Volume 22 (2011), p. 265714 (7 pp)

[14] R. Dingreville; J. Qu Interfacial excess energy, excess stress, and excess strain in elastic solids: Planar interfaces, Journal of the Mechanics and Physics of Solids, Volume 56 (2008) no. 5, pp. 1944-1954

[15] W. Gao; S.W. Yu; G.Y. Huang Finite element characterization of the size-dependent mechanical behavior in nanosystems, Nanotechnology, Volume 17 (2006), pp. 1118-1122

[16] J. Yvonnet; H.L. Quang; Q.C. He An XFEM/level set approach to modelling surface/interface effects and to computing the size-dependent effective properties of nanocomposites, Computational Mechanics, Volume 42 (2008), pp. 119-131

[17] S. Brisard; L. Dormieux; D. Kondo Hashin–Shtrikman bounds on the bulk modulus of a nanocomposite with spherical inclusions and interface effects, Computational Materials Science, Volume 48 (2010), pp. 589-596

[18] H.L. Quang; Q.C. He Variational principles and bounds for elastic inhomogeneous materials with coherent imperfect interfaces, Mechanics of Materials, Volume 40 (2008) no. 10, pp. 865-884

[19] P. Lipinski; E. Barhdadi; M. Cherkaoui Micromechanical modeling of an arbitrary ellipsoidal multi-coated inclusion, Philosophical Magazine, Volume 86 (2006) no. 10, pp. 1305-1326

[20] V. Marcadon; E. Herve; A. Zaoui Micromechanical modeling of packing and size effects in particulate composites, International Journal of Solids and Structures, Volume 44 (2007), pp. 8213-8228

[21] Y. Benveniste; T. Miloh Imperfect soft and stiff interfaces in two-dimensional elasticity, Mechanics of Materials, Volume 33 (2001), pp. 309-323

[22] B. Paliwal; M. Cherkaoui Atomistic–continuum interphase model for effective properties of composite materials containing nano-inhomogeneities, Philosophical Magazine, Volume 91 (2011), pp. 3905-3930

[23] J.W. Martin Many-body forces in solids and the Brugger elastic constants: II. Inner elastic constants, Journal of Physics C, Volume 8 (1975), pp. 2858-2868

[24] D.E. Spearot et al. On the elastic tensile deformation of 〈100〉 bicrystal interfaces in copper, Computational Materials Science, Volume 42 (2008), pp. 57-67

[25] S. Benkassem; L. Capolungo; M. Cherkaoui Mechanical properties and multi-scale modeling of nanocrystalline materials, Acta Materialia, Volume 55 (2008) no. 10, pp. 3536-3572

[26] G.M. Odegard; T.C. Clancy; T.S. Gates Modeling of the mechanical properties of nanoparticle/polymer composites, Polymer, Volume 46 (2005), pp. 553-562

[27] M. Born; K. Huang Dynamical Theory of Crystal Lattices, Clarendon Press, Oxford, 1954

[28] I. Alber et al. Grain boundaries as heterogeneous systems: atomic and continuum elastic properties, Philosophical Transaction of Royal Society of London A, Volume 339 (1992), pp. 555-586

[29] H. Duan et al. Eshelby formalism for nano-inhomogeneities, Proceedings of the Royal Society A, Volume 461 (2005), pp. 3335-3353

[30] R. Hill The elastic behavior of a crystalline aggregate, Proceedings of the Physical Society A, Volume 65 (1951), pp. 349-354

[31] K. Bhattacharya; M. Ortiz; G. Ravichandran Energy-based model of compressive splitting in heterogeneous brittle solids, Journal of the Mechanics and Physics of Solids, Volume 46 (1998) no. 10, pp. 2171-2181

[32] T. Mura Micromechanics of Defects in Solids, Martinus Nijhoff, Dordrecht, 1987

[33] H.L. Duan et al. Nanoporous materials can be made stiffer than non-porous counterparts by surface modification, Acta Materialia, Volume 54 (2007), pp. 2983-2990

[34] T. Chen; G.K. Dvorak; C.C. Yu Size-dependent elastic properties of unidirectional nano-composites with interface stresses, Acta Mechanica, Volume 188 (2007), pp. 39-54

[35] S.G. Mogilevskaya et al. The effects of surface elasticity and surface tension on the transverse overall elastic behavior of unidirectional nano-composites, Computational Science and Technology, Volume 70 (2010), pp. 427-434

[36] Y. Mishin et al. Interatomic potentials for monoatomic metals from experimental data and ab initio calculations, Physical Review B, Volume 59 (1999) no. 5, pp. 3393-3407

[37] R. Miller; V. Shenoy Size-dependent elastic properties of nanosized structural elements, Nanotechnology, Volume 11 (2000), pp. 139-147

[38] P. Sharma; A. Dasgupta Average elastic fields and scale-dependent overall properties of heterogeneous micropolar materials containing spherical and cylindrical inhomogeneities, Physical Review B, Volume 66 (2002), p. 224110 (10 pp)

Cité par Sources :

Commentaires - Politique


Ces articles pourraient vous intéresser

Nanomechanics serving polymer-based composite research

Thomas Pardoen; Nathan Klavzer; Sarah Gayot; ...

C. R. Phys (2021)


Modelling of planar interface elastic behaviour: Application to grain boundaries in polycrystals

Lionel Gélébart

C. R. Méca (2010)