A heat-balance integral method employing a parabolic profile with a variable (self-adapting) exponent has been developed. The parabolic profile satisfies both the boundary conditions and the heat-balance integral at any value of the exponent, while the optimal solution requires minimization of the mean-squared error defined by the domain parabolic equation. The concept of a variable exponent results in simple relationships involving the LambertW function and the initial values defined through the profile calibration at
Jordan Hristov 1
@article{CRMECA_2012__340_7_493_0, author = {Jordan Hristov}, title = {The heat-balance integral: 2. {Parabolic} profile with a variable exponent: {The} concept, analysis and numerical experiments}, journal = {Comptes Rendus. M\'ecanique}, pages = {493--500}, publisher = {Elsevier}, volume = {340}, number = {7}, year = {2012}, doi = {10.1016/j.crme.2012.03.002}, language = {en}, }
TY - JOUR AU - Jordan Hristov TI - The heat-balance integral: 2. Parabolic profile with a variable exponent: The concept, analysis and numerical experiments JO - Comptes Rendus. Mécanique PY - 2012 SP - 493 EP - 500 VL - 340 IS - 7 PB - Elsevier DO - 10.1016/j.crme.2012.03.002 LA - en ID - CRMECA_2012__340_7_493_0 ER -
Jordan Hristov. The heat-balance integral: 2. Parabolic profile with a variable exponent: The concept, analysis and numerical experiments. Comptes Rendus. Mécanique, Analytical and innovative solutions for heat transfer problems involving phase change and interfaces, Volume 340 (2012) no. 7, pp. 493-500. doi : 10.1016/j.crme.2012.03.002. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2012.03.002/
[1] The heat balance integral and its application to problems involving a change of phase, Transactions of ASME, Volume 80 (1958) no. 1–2, pp. 335-342
[2] On high-order polynomial heat-balance integral implementations, Thermal Science, Volume 13 (2009) no. 2, pp. 11-25
[3] Application of heat-balance integral method to conjugate thermal explosion, Thermal Science, Volume 13 (2009) no. 2, pp. 73-80
[4] On the Goodman heat-balance integral method for Stefan like-problems, Thermal Science, Volume 13 (2009) no. 2, pp. 91-96
[5] How good is Goodmanʼs heat-balance integral method for analyzing the rewetting of hot surfaces?, Thermal Science, Volume 13 (2009) no. 2, pp. 97-112
[6] Analysis of phase-change in finite slabs subjected to convective boundary conditions: Part I – Melting, Int. Rev. Chem. Eng., Volume 1 (2009) no. 1, pp. 87-99
[7] Analysis of phase-change in finite slabs subjected to convective boundary conditions: Part II – Freezing, Int. Rev. Chem. Eng., Volume 1 (2009) no. 1, pp. 100-108
[8] Application of integral methods to transient nonlinear heat transfer (T.F. Irvine; J.P. Hartnett, eds.), Advances in Heat Transfer, vol. 1, Academic Press, San Diego, CA, 1964, pp. 51-122
[9] The heat-balance integral method by a parabolic profile with unspecified exponent: Analysis and benchmark exercises, Thermal Science, Volume 13 (2009) no. 2, pp. 22-48
[10] W. Braga, M. Mantelli, A new approach for the heat balance integral method applied to heat conduction problems, in: 38th AIAA Thermophysics Conference, Toronto, Ontario, June 6–9, 2005, paper AIAA-2005-4686.
[11] Research note on a parabolic heat-balance integral method with unspecified exponent: An entropy generation approach in optimal profile determination, Thermal Science, Volume 13 (2009) no. 2, pp. 49-59
[12] The heat-balance integral: How to calibrate the parabolic profile?, Comptes Rendus Mecanique, Volume 340 (2012) no. 7, pp. 485-492
[13] Optimizing the exponent in the heat balance and refined integral methods, Int. Comm. Heat Mass Transfer, Volume 36 (2009), pp. 143-147 | DOI
[14] Conduction of Heat in Solids, Oxford University Press, Oxford, UK, 1992
[15] On some latent heat effects on the floating zone growth, Adv. Space Res., Volume 36 (2005) no. 1, pp. 96-98
[16] Computational solution for fluid flow under solid/liquid phase change conditions, Computers & Fluids, Volume 31 (2002) no. 4–7, pp. 539-556
- A non-linear diffusion problem with power-law diffusivity: An approximate solution experimenting with a modified sinc function, Mathematical Modelling and Numerical Simulation with Applications, Volume 4 (2024) no. 5-Special Issue: ICAME'24, p. 6 | DOI:10.53391/mmnsa.1545438
- On the application of the double integral method with quadratic temperature profile for spherical solidification of lead and tin metals, Applied Thermal Engineering, Volume 219 (2023), p. 119528 | DOI:10.1016/j.applthermaleng.2022.119528
- Spherical solidification: An application of the integral methods, International Journal of Thermal Sciences, Volume 177 (2022), p. 107575 | DOI:10.1016/j.ijthermalsci.2022.107575
- Estimation of Gas Absorption and Diffusion Coefficients for Dissolved Gases in Liquids, Industrial Engineering Chemistry Research, Volume 58 (2019) no. 2, p. 1019 | DOI:10.1021/acs.iecr.8b02343
- Parabolic Profile in Heat-Conduction Problems. 1. Semi-Bounded Space with a Surface of Constant Temperature, Journal of Engineering Physics and Thermophysics, Volume 91 (2018) no. 6, p. 1391 | DOI:10.1007/s10891-018-1873-1
- Quasi-Analytical Solutions and Methods, The Classical Stefan Problem (2018), p. 311 | DOI:10.1016/b978-0-444-63581-5.00012-9
- Bibliography, The Classical Stefan Problem (2018), p. 683 | DOI:10.1016/b978-0-444-63581-5.09990-5
- Integral solutions to transient nonlinear heat (mass) diffusion with a power-law diffusivity: a semi-infinite medium with fixed boundary conditions, Heat and Mass Transfer, Volume 52 (2016) no. 3, p. 635 | DOI:10.1007/s00231-015-1579-2
- Method of Boundary Characteristics, Journal of Engineering Physics and Thermophysics, Volume 88 (2015) no. 6, p. 1390 | DOI:10.1007/s10891-015-1324-1
Cité par 9 documents. Sources : Crossref
Commentaires - Politique