Comptes Rendus
The heat-balance integral: 2. Parabolic profile with a variable exponent: The concept, analysis and numerical experiments
Comptes Rendus. Mécanique, Volume 340 (2012) no. 7, pp. 493-500.

A heat-balance integral method employing a parabolic profile with a variable (self-adapting) exponent has been developed. The parabolic profile satisfies both the boundary conditions and the heat-balance integral at any value of the exponent, while the optimal solution requires minimization of the mean-squared error defined by the domain parabolic equation. The concept of a variable exponent results in simple relationships involving the LambertW function and the initial values defined through the profile calibration at x=0. Two simple 1-D problems with classic solutions are developed to demonstrate the method.

Publié le :
DOI : 10.1016/j.crme.2012.03.002
Mots clés : Heat-balance integral, Parabolic profile, Variable exponent, LambertW function

Jordan Hristov 1

1 Department of Chemical Engineering, University of Chemical Technology and Metallurgy, 1756 Sofia, 8 Kl. Ohridsky Blvd., Bulgaria
@article{CRMECA_2012__340_7_493_0,
     author = {Jordan Hristov},
     title = {The heat-balance integral: 2. {Parabolic} profile with a variable exponent: {The} concept, analysis and numerical experiments},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {493--500},
     publisher = {Elsevier},
     volume = {340},
     number = {7},
     year = {2012},
     doi = {10.1016/j.crme.2012.03.002},
     language = {en},
}
TY  - JOUR
AU  - Jordan Hristov
TI  - The heat-balance integral: 2. Parabolic profile with a variable exponent: The concept, analysis and numerical experiments
JO  - Comptes Rendus. Mécanique
PY  - 2012
SP  - 493
EP  - 500
VL  - 340
IS  - 7
PB  - Elsevier
DO  - 10.1016/j.crme.2012.03.002
LA  - en
ID  - CRMECA_2012__340_7_493_0
ER  - 
%0 Journal Article
%A Jordan Hristov
%T The heat-balance integral: 2. Parabolic profile with a variable exponent: The concept, analysis and numerical experiments
%J Comptes Rendus. Mécanique
%D 2012
%P 493-500
%V 340
%N 7
%I Elsevier
%R 10.1016/j.crme.2012.03.002
%G en
%F CRMECA_2012__340_7_493_0
Jordan Hristov. The heat-balance integral: 2. Parabolic profile with a variable exponent: The concept, analysis and numerical experiments. Comptes Rendus. Mécanique, Volume 340 (2012) no. 7, pp. 493-500. doi : 10.1016/j.crme.2012.03.002. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2012.03.002/

[1] T.R. Goodman The heat balance integral and its application to problems involving a change of phase, Transactions of ASME, Volume 80 (1958) no. 1–2, pp. 335-342

[2] A.S. Wood; F. Mosally; A. Al-Fhaid On high-order polynomial heat-balance integral implementations, Thermal Science, Volume 13 (2009) no. 2, pp. 11-25

[3] V. Novozhilov Application of heat-balance integral method to conjugate thermal explosion, Thermal Science, Volume 13 (2009) no. 2, pp. 73-80

[4] N. Sadoun; El-Khider Si-Ahmed; P. Collinet; J. Legrand On the Goodman heat-balance integral method for Stefan like-problems, Thermal Science, Volume 13 (2009) no. 2, pp. 91-96

[5] S.K. Sahu; P.K. Das; S. Bhattacharyya How good is Goodmanʼs heat-balance integral method for analyzing the rewetting of hot surfaces?, Thermal Science, Volume 13 (2009) no. 2, pp. 97-112

[6] A.P. Roday; M.J. Kazmierczak Analysis of phase-change in finite slabs subjected to convective boundary conditions: Part I – Melting, Int. Rev. Chem. Eng., Volume 1 (2009) no. 1, pp. 87-99

[7] A.P. Roday; M.J. Kazmierczak Analysis of phase-change in finite slabs subjected to convective boundary conditions: Part II – Freezing, Int. Rev. Chem. Eng., Volume 1 (2009) no. 1, pp. 100-108

[8] T.R. Goodman Application of integral methods to transient nonlinear heat transfer (T.F. Irvine; J.P. Hartnett, eds.), Advances in Heat Transfer, vol. 1, Academic Press, San Diego, CA, 1964, pp. 51-122

[9] J. Hristov The heat-balance integral method by a parabolic profile with unspecified exponent: Analysis and benchmark exercises, Thermal Science, Volume 13 (2009) no. 2, pp. 22-48

[10] W. Braga, M. Mantelli, A new approach for the heat balance integral method applied to heat conduction problems, in: 38th AIAA Thermophysics Conference, Toronto, Ontario, June 6–9, 2005, paper AIAA-2005-4686.

[11] J. Hristov Research note on a parabolic heat-balance integral method with unspecified exponent: An entropy generation approach in optimal profile determination, Thermal Science, Volume 13 (2009) no. 2, pp. 49-59

[12] J. Hristov The heat-balance integral: How to calibrate the parabolic profile?, Comptes Rendus Mecanique, Volume 340 (2012) no. 7, pp. 485-492

[13] T. Myers Optimizing the exponent in the heat balance and refined integral methods, Int. Comm. Heat Mass Transfer, Volume 36 (2009), pp. 143-147 | DOI

[14] H.S. Carslaw; J.C. Jaeger Conduction of Heat in Solids, Oxford University Press, Oxford, UK, 1992

[15] M. El Ganaoui; R. Bennacer On some latent heat effects on the floating zone growth, Adv. Space Res., Volume 36 (2005) no. 1, pp. 96-98

[16] M. El Ganaoui; A. Lamazouade; P. Bontoux; D. Morvan Computational solution for fluid flow under solid/liquid phase change conditions, Computers & Fluids, Volume 31 (2002) no. 4–7, pp. 539-556

Cité par Sources :

Commentaires - Politique