A numerical approach is introduced within the outline of the thermal lattice Boltzmann method developments to solve problems with cracks. It consists on an extension of the termed Partial Bounce Back scheme (PBB) to transient situations. A special case of the scheme leads to account the thermal contact resistance between surfaces. Numerical examples are provided to validate and demonstrate the accuracy of the proposed methodology and its applicative potential.
Une nouvelle approche numérique est introduite dans le sillage des développements des méthodes de gaz sur réseaux pour résoudre des problèmes en présence de contact imparfait. Lʼapproche consiste en une extension du schéma PBB (Partial Bounce Back) aux situations transitoires. Le développement permet la prise en compte de la nature du contact entre deux milieux solides. Des exemples numériques permettent de valider et de montrer la précision de cette approche ainsi que son potentiel applicatif.
Mots-clés : Méthode de gaz sur réseaux, Transferts thermiques, Resistance thermique du contact, Simulation numérique, Modélisation, Conditions aux limites
M. El Ganaoui 1; S. Addakiri 1, 2; E. Semma 2
@article{CRMECA_2012__340_7_518_0, author = {M. El Ganaoui and S. Addakiri and E. Semma}, title = {On the aptitude of the lattice {Boltzmann} approach for the treatment of the transient heat transfer with crack resistance}, journal = {Comptes Rendus. M\'ecanique}, pages = {518--525}, publisher = {Elsevier}, volume = {340}, number = {7}, year = {2012}, doi = {10.1016/j.crme.2012.03.010}, language = {en}, }
TY - JOUR AU - M. El Ganaoui AU - S. Addakiri AU - E. Semma TI - On the aptitude of the lattice Boltzmann approach for the treatment of the transient heat transfer with crack resistance JO - Comptes Rendus. Mécanique PY - 2012 SP - 518 EP - 525 VL - 340 IS - 7 PB - Elsevier DO - 10.1016/j.crme.2012.03.010 LA - en ID - CRMECA_2012__340_7_518_0 ER -
%0 Journal Article %A M. El Ganaoui %A S. Addakiri %A E. Semma %T On the aptitude of the lattice Boltzmann approach for the treatment of the transient heat transfer with crack resistance %J Comptes Rendus. Mécanique %D 2012 %P 518-525 %V 340 %N 7 %I Elsevier %R 10.1016/j.crme.2012.03.010 %G en %F CRMECA_2012__340_7_518_0
M. El Ganaoui; S. Addakiri; E. Semma. On the aptitude of the lattice Boltzmann approach for the treatment of the transient heat transfer with crack resistance. Comptes Rendus. Mécanique, Analytical and innovative solutions for heat transfer problems involving phase change and interfaces, Volume 340 (2012) no. 7, pp. 518-525. doi : 10.1016/j.crme.2012.03.010. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2012.03.010/
[1] A lattice BGK model for the Bouessinesq equation, Internat. J. Numer. Methods Fluids, Volume 39 (2002), pp. 325-342
[2] Simulation of shockwave for propagation with a thermal lattice Boltzmann model, Int. J. Numer. Methods Fluids, Volume 41 (2003), pp. 1137-1146
[3] A lattice Boltzmann algorithm for fluid solid conjugate heat transfer, Int. J. Thermal Sci., Volume 46 (2007), pp. 228-234
[4] A lattice Boltzmann kinetic model for microflow and heat transfer, J. Stat. Phys., Volume 121 (2005) no. 1/2, pp. 239-255
[5] A coupled lattice BGK model for the Boussinesq equations, Internat. J. Numer. Methods Fluids, Volume 39 (2002), pp. 325-342
[6] Theory of the lattice Boltzmann method: From the Boltzmann equation to the lattice Boltzmann equation, Phys. Rev. E, Volume 56 (1997), pp. 6811-6817
[7] A. Dupuis, From a lattice Boltzmann model to a parallel and reusable implementation of a virtual river, Thèse soutenue à Genève en Suisse, 2002.
[8] Lattice-gas automata for the Navier–Stokes equations, Phys. Rev. Lett., Volume 56 (1986), pp. 1505-1508
[9] A novel thermal model for the lattice Boltzmann method in incompressible limit, J. Comput. Phys., Volume 146 (1998), pp. 282-300
[10] Application to natural convection enclosed flows of a lattice Boltzmann BGK model coupled with a general purpose thermal boundary condition, Int. J. Thermal Sci., Volume 43 (2004), pp. 575-586
[11] Thermal boundary condition for the thermal lattice Boltzmann equation, Phys. Rev. E, Volume 72 (2005), p. 016703
[12] Thermal curved boundary treatment for the thermal lattice Boltzmann equation, Int. J. Modern Phys. C, Volume 17 (2006) no. 5, pp. 631-643
[13] Temperature and thermal resistance in frictional devices, Appl. Thermal Eng., Volume 24 (2004) no. 17, pp. 2567-2581
[14] Analytical solution of unsteady heat conduction in a two-layered material in imperfect contact subjected to a moving heat source, Int. J. Thermal Sci., Volume 49 (2010) no. 2, pp. 311-318
[15] Analytical solution of unsteady heat diffusion within a porous copper layer deposited on alumina substrate and subjected to a moving laser beam, Defect Diffusion Forum, Volume 273–276 (2008), pp. 52-57
[16] Faisabilité dʼune méthode dʼévaluation de la résistance thermique de contact entre une lamelle céramique écrasée sur un substrat métallique, Mécanique & Industries, Volume 8 (2007), pp. 71-75
[17] A technique to compensate for temperature history effect in the simulation of non-isothermal forging processes, J. Mater. Process. Technol., Volume 33 (1992) no. 1–2, pp. 125-140
[18] Thermal contact in transient state – A new model and two experiments, J. Thermophys. Heat Transfer, Volume 6 (1992) no. 2, pp. 356-363
[19] T. Jurkowski, Y. Jarny, D. Delaunay, Simultaneous identification of thermal conductivity and thermal contact resistance without internal temperature measurements, in: Proceedings of the 3rd UK Conference on Heat Transfer, Birmingham, 1992.
[20] A 3D computational model of heat transfer coupled to phase change in multilayer materials with random thermal contact resistance, Int. J. Thermal Sci., Volume 48 (2009), pp. 421-427
[21] A new method for numerical simulation of thermal contact resistance in cylindrical coordinates, Int. J. Heat Mass Transfer, Volume 47 (2004), pp. 1091-1098
[22] A model for rapid solidification for plasma spraying, Mater. Sci. Forum, Volume 553 (2007), pp. 223-230
[23] Premiers instants du refroidissement dʼune goutte métallique après son impact sur une paroi, Revue Générale de Thermique, Volume 36 (1997) no. 9, pp. 682-689
[24] Estimation of thermal contract resistance during the first stages of metal solidification process. II. Experimental setup and results, Int. J. Heat Mass Transfer, Volume 42 (1999) no. 12, pp. 2129-2142
[25] Modelling of thermal contact resistance within the framework of the thermal lattice Boltzmann method, Int. J. Thermal Sci., Volume 47 (2008), pp. 1276-1283
[26] A mass conserving boundary condition for the lattice Boltzmann equation method, J. Comput. Phys., Volume 227 (2008), pp. 8472-8487
Cited by Sources:
Comments - Policy