Comptes Rendus
A second gradient continuum model accounting for some effects of micro-structure on reconstructed bone remodelling
Comptes Rendus. Mécanique, Volume 340 (2012) no. 8, pp. 575-589.

We propose a second gradient, two-solids, continuum mixture model with variable masses to describe the effect of micro-structure on mechanically-driven remodelling of bones grafted with bio-resorbable materials. A one-dimensional numerical simulation is addressed showing the potentialities of the proposed generalized continuum model. In particular, we show that the used second gradient model allows for the description of some micro-structure-related size effects which are known to be important in hierarchically heterogeneous materials like reconstructed bones. Moreover, the influence of the introduced second gradient parameters on the final percentages of replacement of artificial bio-material with natural bone tissue is presented and discussed.

Published online:
DOI: 10.1016/j.crme.2012.05.003
Keywords: Biomechanics, Second gradient continuum mixture model, Hierarchically heterogeneous materials, Micro-structure-related size effects, Natural bone tissue, Bio-resorbable material, Bone resorption and synthesis, Load-induced replacement of artificial material with natural bone tissue, Numerical simulations

Angela Madeo 1, 2; D. George 3; T. Lekszycki 4, 5, 2; Mathieu Nierenberger 3; Yves Rémond 3, 2

1 LGCIE, université de Lyon, INSA, 20, avenue Albert-Einstein, 69621 Villeurbanne cedex, France
2 International Research Center M&MOCS, University of LʼAquila, Cisterna di Latina, Italy
3 IMFS, université de Strasbourg, CNRS, 2, rue Boussingault, 67000 Strasbourg, France
4 Department of Machinery Design and Biomedical Engineering, Warsaw University of Technology, 85 Narbutta Street, 02-524 Warsaw, Poland
5 Warsaw Medical University, 4 Lindleya Street, 02-005 Warsaw, Poland
     author = {Angela Madeo and D. George and T. Lekszycki and Mathieu Nierenberger and Yves R\'emond},
     title = {A second gradient continuum model accounting for some effects of micro-structure on reconstructed bone remodelling},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {575--589},
     publisher = {Elsevier},
     volume = {340},
     number = {8},
     year = {2012},
     doi = {10.1016/j.crme.2012.05.003},
     language = {en},
AU  - Angela Madeo
AU  - D. George
AU  - T. Lekszycki
AU  - Mathieu Nierenberger
AU  - Yves Rémond
TI  - A second gradient continuum model accounting for some effects of micro-structure on reconstructed bone remodelling
JO  - Comptes Rendus. Mécanique
PY  - 2012
SP  - 575
EP  - 589
VL  - 340
IS  - 8
PB  - Elsevier
DO  - 10.1016/j.crme.2012.05.003
LA  - en
ID  - CRMECA_2012__340_8_575_0
ER  - 
%0 Journal Article
%A Angela Madeo
%A D. George
%A T. Lekszycki
%A Mathieu Nierenberger
%A Yves Rémond
%T A second gradient continuum model accounting for some effects of micro-structure on reconstructed bone remodelling
%J Comptes Rendus. Mécanique
%D 2012
%P 575-589
%V 340
%N 8
%I Elsevier
%R 10.1016/j.crme.2012.05.003
%G en
%F CRMECA_2012__340_8_575_0
Angela Madeo; D. George; T. Lekszycki; Mathieu Nierenberger; Yves Rémond. A second gradient continuum model accounting for some effects of micro-structure on reconstructed bone remodelling. Comptes Rendus. Mécanique, Volume 340 (2012) no. 8, pp. 575-589. doi : 10.1016/j.crme.2012.05.003.

[1] D.R. Carter; M.C.H. Van der Meulen; G.S. Beaupré Mechanical factors in bone growth and development, Bone, Volume 18 (1996), p. S5-S10

[2] R. Casanova; D. Moukoko; M. Pithioux; C. Pailler-Mattéi; H. Zahouani; P. Chabrand Temporal evolution of skeletal regenerated tissue: What can mechanical investigation add to biological?, Med. Biol. Eng. Comput., Volume 48 (2010), pp. 811-819

[3] R. Huiskes; R. Ruimerman; G.H. van Lenthe; J.D. Janssen Effects of mechanical forces on maintenance and adaptation of form in trabecular bone, Nature, Volume 405 (2000), pp. 704-706

[4] A. Madeo; T. Lekszycki; F. dellʼIsola A continuum model for the bio-mechanical interactions between living tissue and bio-resorbable graft after bone reconstructive surgery, C. R., Méc., Volume 339 (2011), pp. 625-640

[5] T. Lekszycki Optimality conditions in modeling of bone adaptation phenomenon, J. Theoret. Appl. Mech., Volume 37 (1999) no. 3, pp. 607-624

[6] T. Lekszycki Modeling of bone adaptation based on an optimal response hypothesis, Meccanica, Volume 37 (2002), pp. 343-354

[7] T. Lekszycki Functional adaptation of bone as an optimal control problem, J. Theoret. Appl. Mech., Volume 43 (2005) no. 3, pp. 120-140

[8] J. Wolff Das Gesetz der Transformation der Knochen, Hirschwald Verlag, Berlin, 1892

[9] J. Wolff The Law of Bone Remodelling, Springer-Verlag, Berlin, 1986

[10] M. Pawlikowski; M. Klasztorny; K. Skalski Studies on constitutive equation that models bone tissue, Acta Bioeng. Biomech., Volume 10 (2008) no. 4, pp. 39-47

[11] R. Ruimerman; P. Hilbers; B. van Rietbergen; R. Huiskes A theoretical framework for strain-related trabecular bone maintenance and adaptation, J. Biomech., Volume 38 (2005), pp. 931-941

[12] D.H. Hegedus; S.C. Cowin Bone remodeling II: Small strain adaptive elasticity, J. Elast., Volume 6 (1976), pp. 337-352

[13] U. Andreaus; M. Colloca; D. Iacoviello; M. Pignataro Optimal-tuning PID control of adaptive materials for structural efficiency, Struct. Multidiscipl. Optim., Volume 43 (2011), pp. 43-59

[14] U. Andreaus; M. Colloca Prediction of micromotion initiation of an implanted femur under physiological loads and constraints using the finite element method, Proc. Inst. Mech. Eng., H J. Eng. Med., Volume 223 (2009), pp. 589-605

[15] P.J. Prendergast; D. Taylor Prediction of bone adaptation using damage accumulation, J. Biomech., Volume 27 (1994), pp. 1067-1076

[16] M. Doblaré; J.M. García Anisotropic bone remodelling model based on a continuum damage-repair theory, J. Biomech., Volume 35 (2002), pp. 1-17

[17] T. Goto; T. Kojima; T. Iijima; S. Yokokura; H. Kawano; A. Yamamoto; K. Matsuda Resorption of synthetic porous hydroxyapatite and replacement newly formed bone, J. Orthop. Sci., Volume 6 (2001), pp. 444-447

[18] J.F. Mano; R.A. Sousa; L.F. Boesel; N.M. Neves Rui; L. Reis Bioinert, biodegradable and injectable polymeric matrix composites for hard tissue replacement: State of the art and recent developments, Compos. Sci. Technol., Volume 64 (2004), pp. 789-817

[19] A.F. Schilling; W. Linhart; S. Filke; M. Gebauer; T. Schinke; J.M. Rueger; M. Amling Resorbability of bone substitute biomaterials by human osteoclasts, Biomaterials, Volume 25 (2004), pp. 3963-3972

[20] V.I. Sikavitsas; J.S. Temenoff; A.G. Mokos Review: Biomaterials and bone mechanotransduction, Biomaterials, Volume 22 (2001), pp. 2581-2593

[21] A.S. Greenwald, S.D. Boden, V.M. Goldberg, Y.K. Cato, T. Laurencin, R.N. Rosier, Bone graft substitutes: Facts, fictions & applications, in: 68th Annual Meeting American Academy of Orthopaedic Surgeons, San Francisco, California, February 28–March 4, 2001.

[22] K.A. Hing Bioceramic bone graft substitutes: Influence of porosity and chemistry, Int. J. Appl. Ceram. Technol., Volume 2 (2005) no. 3, pp. 184-199

[23] H.-M. Kim Ceramic bioactivity and related biomimetic strategy, Curr. Opin. Solid State Mater. Sci., Volume 7 (2003), pp. 289-299

[24] R. Kraus; J.-P. Stahl; R. Schnettler Treatment strategies in thoracolumbar vertebral fractures: Are there indications for biomaterials?, European J. Trauma (2007), pp. 253-257

[25] J.C. Park; D. Wook; H. Suh A bone replaceable artificial bone substitute: Morphological and physiochemical characterizations, Yonsei Med. J., Volume 41 (2000) no. 4, pp. 468-476

[26] M. Pawlikowski; K. Skalski; M. Haraburda Process of hip joint prosthesis design including bone remodeling phenomenon, Comput. Struct., Volume 81 (2003) no. 8–11, pp. 887-893

[27] S. Pietruszczak; D. Inglis; G.N. Pande Modelling of bone–implant interaction, Comput. Methods Biomech. Biomed. Eng., Volume 2 (1998), pp. 289-298

[28] S. Piszczatowski; K. Skalski; W. Swieszkowski Load transfer between elastic hip implant and viscoelastic bone, Comput. Methods Biomech. Biomed. Eng., Volume 2 (1998), pp. 123-130

[29] Y. Ramaswamy; D.R. Haynes; G. Berger; R. Gildenhaar; H. Lucas Bioceramics composition modulate resorption of human osteoclasts, J. Mater. Sci., Mater. Med., Volume 16 (2005), pp. 1199-1205

[30] J.A. Sanz-Herrera; A.R. Boccaccini Modelling bioactivity and degradation of bioactive glass based tissue engineering scaffolds, Int. J. Solids Struct., Volume 48 (2010), pp. 257-268

[31] J.A. Sanz-Herrera; J.M. García-Aznar; M. Doblaré Micro–macro numerical modelling of bone regeneration in tissue engineering, Comput. Methods Appl. Mech. Eng., Volume 197 (2008), pp. 3092-3107

[32] E. Kuhl; G.A. Holzapfel A continuum model for remodeling in living structures, J. Mater. Sci., Volume 42 (2007) no. 21, pp. 8811-8823

[33] S.C. Cowin Bone poroelasticity, J. Biomech., Volume 32 (1999), pp. 217-238

[34] S.C. Cowin; D.H. Hegedus Bone remodeling I: Theory of adaptive elasticity, J. Elast., Volume 6 (1976), pp. 313-326

[35] K. Garikipati; E.M. Arruda; K. Grosh; H. Narayanan; S. Calve A continuum treatment of growth in biological tissue: The coupling of mass transport and mechanics, J. Mech. Phys. Solids, Volume 52 (2004), pp. 1595-1625

[36] T. Adachi; Y. Osako; M. Tanaka; M. Hojo; S.J. Hollister Framework for optimal design of porous scaffold microstructure by computational simulation of bone regeneration, Biomaterials, Volume 27 (2006) no. 21, pp. 3964-3972

[37] Y. Chen; S. Zhou; Q. Li Microstructure design of biodegradable scaffold and its effect on tissue regeneration, Biomaterials, Volume 32 (2011) no. 22, pp. 5003-5014

[38] P.M. Buechner; R.S. Lakes Size effects in the elasticity and viscoelasticity of bone, Biomech. Model. Mechanobiol., Volume 1 (2003), pp. 295-301

[39] T.P. Harrigan; M. Jasty; R.W. Mann; W.H. Harris Limitations of the continuum assumption in cancellous bone, J. Biomech., Volume 21 (1988), pp. 269-275

[40] R.S. Lakes Dynamical study of couple stress effects in human compact bone, J. Biomech. Eng., Volume 104 (1981), pp. 6-11

[41] H.C. Park; R.S. Lakes Cosserat micromechanics of human bone: Strain redistribution by a hydration sensitive constituent, J. Biomech., Volume 19 (1986) no. 53, pp. 85-97

[42] J.F.C. Yang; R.S. Lakes Experimental study of micropolar and couple stress elasticity in compact bone in bending, J. Biomech., Volume 15 (1982) no. 2, pp. 91-98

[43] S. Weiner; H.D. Wagner The material bone: Structure-mechanical function relations, Annu. Rev. Mater. Sci., Volume 28 (1998), pp. 271-298

[44] I. Jasiuk Modeling of trabecular bone as a hierarchical material, Comput. Fluid Solid Mech., Volume 1 (2003) no. 2, pp. 1727-1728

[45] M. Rubin; I. Jasiuk The TEM characterization of the lamellar structure of osteoporotic human trabecular bone, Micron, Volume 36 (2005), pp. 653-664

[46] J.F.C. Yang; R.S. Lakes Transient study of couple stress in compact bone torsion, J. Biomech. Eng., Volume 103 (1981), pp. 275-279

[47] A. Yoo; I. Jasiuk Modeling of trabecular bone as a couple stress continuum, Adv. Bioeng. ASME (2003), pp. 41-42

[48] A. Yoo; I. Jasiuk Couple-stress moduli of a trabecular bone idealized as a 3D periodic cellular network, J. Biomech., Volume 39 (2006), pp. 2241-2252

[49] J. Fatemi; F. Van Keulen; P.R. Onck Generalized continuum theories: Application to stress analysis in bone, Meccanica, Volume 37 (2002) no. 4–5, pp. 385-396

[50] A. Papanicolopulos; A. Zervos Continua with microstructure: Second gradient theory. Theory, examples and computational issues, Eur. J. Environ. Civ. Eng., Volume 14 (2010) no. 8–9, pp. 1031-1050

[51] E.C. Aifantis Strain gradient interpretation of size effects, Eur. J. Mech. A, Solids, Volume 95 (1999) no. 3, pp. 299-314

[52] G.E. Exadaktylos; I. Vardoulakis Microstructure in linear elasticity and scale effects: A reconsideration of basic rock mechanics and rock fracture mechanics, Tectonophysics, Volume 335 (2001), pp. 81-109

[53] P. Germain La méthode des puissances virtuelles en mécanique des milieux continus, premiere partie, théorie du second gradient, J. Méc., Volume 12 (1973) no. 2, pp. 234-274

[54] F. dellʼIsola; P. Seppecher The relationship between edge contact forces, double force and interstitial working allowed by the principle of virtual power, C. R. Acad. Sci. Paris, Ser. IIb, Volume 321 (1995), pp. 303-308

[55] F. dellʼIsola; H. Gouin; P. Seppecher Radius and surface tension of microscopic bubbles by second gradient theory, C. R. Acad. Sci. Paris, Ser. IIB, Volume 320 (1995), pp. 211-216

[56] F. dellʼIsola; H. Gouin; G. Rotoli Nucleation of spherical shell-like interfaces by second gradient theory: Numerical simulations, Eur. J. Mech. B, Fluids, Volume 15 (1996) no. 4, pp. 545-568

[57] F. dellʼIsola; P. Seppecher Edge contact forces and quasi-balanced power, Meccanica, Volume 32 (1997), pp. 33-52

[58] F. dellʼIsola; G. Sciarra; S. Vidoli Generalized Hookeʼs law for isotropic second gradient materials, Proc. R. Soc. A, Volume 465 (2009) no. 2107, pp. 2177-2196

[59] R.A. Toupin Elastic materials with couple-stresses, Arch. Ration. Mech. Anal., Volume 11 (1962), pp. 385-414

[60] S. Quiligotti; G. Maugin; F. dellʼIsola An Eshelbian approach to the nonlinear mechanics of constrained solid-fluid mixtures, Acta Mech., Volume 160 (2003), pp. 45-60

[61] G. Sciarra; F. dellʼIsola; N. Ianiro; A. Madeo A variational deduction of second gradient poroelasticity I: General theory, J. Mech. Mater. Struct., Volume 3 (2008) no. 3, pp. 507-526

[62] A. Luongo; A. Paolone Perturbation methods for bifurcation analysis from multiple nonresonant complex eigenvalues, Nonlinear Dyn., Volume 14 (1997), pp. 193-210

[63] A. Luongo; A. Paolone Multiple scale analysis for divergence-Hopf bifurcation of imperfect symmetric systems, J. Sound Vib., Volume 218 (1998) no. 3, pp. 527-539

[64] A. Luongo; A. Paolone; A. Di Egidio Multiple time scales analysis for 1:2 and 1:3 resonant Hopf bifurcations, Nonlinear Dyn., Volume 34 (2003), pp. 269-291

[65] A. Di Egidio; A. Luongo; A. Paolone Linear and non-linear interactions between static and dynamic bifurcations of damped planar beams, Int. J. Non-Linear Mech., Volume 42 (2007), pp. 88-98

[66] A. Alessandroni; F. dellʼIsola; M. Porfiri A revival of electric analogs for vibrating mechanical systems aimed to their efficient control by PZT actuators, Int. J. Solids Struct., Volume 39 (2002), pp. 5295-5324

[67] U. Andreaus; F. dellʼIsola; M. Porfiri Piezoelectric passive distributed controllers for beam flexural vibrations, J. Vib. Control, Volume 10 (2004), p. 625

[68] F. dellʼIsola; S. Vidoli Damping of bending waves in truss beams by electrical transmission lines with PZT actuators, Arch. Appl. Mech., Volume 68 (1998), pp. 626-636

[69] E. Hamed; Y. Lee; I. Jasiuk Multiscale modeling of elastic properties of cortical bone, Acta Mech., Volume 213 (2010) no. 1–2, pp. 131-154

[70] D. Inglis; S. Pietruszczak Characterization of anisotropy in porous media by means of linear intercept measurements, Int. J. Solids Struct., Volume 40 (2003) no. 5, pp. 1243-1264

[71] J.Y. Rho; R.B. Ashman; C.H. Turner Youngʼs modulus of trabecular and cortical bone material: Ultrasonic and microtensile measurements, J. Biomech., Volume 26 (1993) no. 2, pp. 111-119

[72] F. dellʼIsola; A. Romano On the derivation of thermomechanical balance equations for continuous systems with a nonmaterial interface, Int. J. Eng. Sci., Volume 25 (1987), pp. 1459-1468

[73] F. dellʼIsola; L. Rosa; C. Woźniak A micro-structured continuum modelling compacting fluid-saturated grounds: The effects of pore-size scale parameter, Acta Mech., Volume 127 (1998), pp. 165-182

[74] F. dellʼIsola; M. Guarascio; K. Hutter A variational approach for the deformation of a saturated porous solid. A second-gradient theory extending Terzaghiʼs effective stress principle, Arch. Appl. Mech., Volume 70 (2000), pp. 323-337

[75] F. dellʼIsola; L. Rosa An extension of Kelvin and Bredt formulas, Math. Mech. Solids, Volume 1 (1996), pp. 243-250

[76] S. Forest; D.K. Trinh Generalized continua and non-homogeneous boundary conditions in homogenization methods, ZAMM, Volume 91 (2011), pp. 90-109

[77] S. Forest; E.C. Aifantis Some links between recent gradient thermo-elasto-plasticity theories and the thermomechanics of generalized continua, Int. J. Solids Struct., Volume 47 (2010), pp. 3367-3376

[78] S. Forest Milieux continus généralisés et matériaux hétérogènes, Les presses de lʼEcole des Mines, Paris, Avril 2006 (ISBN: 2-911762-67-3)

[79] F. dellʼIsola; A. Romano A phenomenological approach to phase transition in classical field theory, Int. J. Eng. Sci., Volume 25 (1987), pp. 1469-1475

[80] C.Y. Wang; L. Feng; I. Jasiuk Scale and boundary conditions effects on the apparent elastic moduli of trabecular bone modeled as a periodic cellular solid, J. Biomech. Eng., Trans. ASME, Volume 131 (2009) no. 12, p. 121008

[81] R.D. Mindlin Second gradient of strain and surface tension in linear elasticity, Int. J. Solids Struct., Volume 1 (1965), pp. 417-438

Cited by Sources:

Comments - Policy