Comptes Rendus
Emerging crack front identification from tangential surface displacements
Comptes Rendus. Mécanique, Volume 340 (2012) no. 8, pp. 565-574.

We present in this Note an identification method for the crack front of a crack emerging at the surface of an elastic solid, provided displacements field or its tangential components are given on a part free of loading of the external surface. The method is based on two steps. The first one is the solution of a Cauchy problem in order to expand the displacement field within the solid up to a surface enclosing the unknown crack. Then the reciprocity gap method is used in order to determine the displacement jump on the crack and then the crack itself. We prove then an identifiability result. The method is illustrated with two synthetic examples: a crossing crack with linear crack front and an elliptic emerging crack.

On présente dans cette Note une méthode dʼidentification du front dʼune fissure débouchant à la surface dʼun solide élastique, à partir de la donnée des composantes tangentielles du champ de déplacement sur une partie libre de charge de la surface extérieure. La méthode comporte deux étapes. Dans un premier temps, on résoud un problème de Cauchy pour prolonger le champ en surface jusquʼà une surface englobant la fissure inconnue. Dans une seconde étape, on utilise la méthode dʼécart la réciprocité pour identifier le saut de déplacement à la traversée de la fissure, ce qui conduit, par lʼidentification du support, à lʼidentification de la fissure elle-même. On prouve ainsi un résultat dʼidentifiabilité. La méthode est illustrée sur deux exemples synthétiques : une fissure traversante à front rectiligne et une fissure elliptique débouchante.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crme.2012.06.002
Keywords: Solids and structures, Inverse problem, Crack identification, Cauchy problem, Elasticity, Full-fields measurements, Data completion
Keywords: Solides et structures, Problèmes inverses, Identification de fissure, Problème de Cauchy, Elasticité, Mesures de champs, Complétion de données

Stéphane Andrieux 1; Thouraya Nouri Baranger 2

1 LaMSID, UMR CNRS-EDF 2832, 1, avenue du Général de Gaulle, 92141 Clamart cedex, France
2 Université de Lyon, CNRS, Université Lyon 1, LaMCoS UMR5259, 69621 Villeurbanne cedex, France
@article{CRMECA_2012__340_8_565_0,
     author = {St\'ephane Andrieux and Thouraya Nouri Baranger},
     title = {Emerging crack front identification from tangential surface displacements},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {565--574},
     publisher = {Elsevier},
     volume = {340},
     number = {8},
     year = {2012},
     doi = {10.1016/j.crme.2012.06.002},
     language = {en},
}
TY  - JOUR
AU  - Stéphane Andrieux
AU  - Thouraya Nouri Baranger
TI  - Emerging crack front identification from tangential surface displacements
JO  - Comptes Rendus. Mécanique
PY  - 2012
SP  - 565
EP  - 574
VL  - 340
IS  - 8
PB  - Elsevier
DO  - 10.1016/j.crme.2012.06.002
LA  - en
ID  - CRMECA_2012__340_8_565_0
ER  - 
%0 Journal Article
%A Stéphane Andrieux
%A Thouraya Nouri Baranger
%T Emerging crack front identification from tangential surface displacements
%J Comptes Rendus. Mécanique
%D 2012
%P 565-574
%V 340
%N 8
%I Elsevier
%R 10.1016/j.crme.2012.06.002
%G en
%F CRMECA_2012__340_8_565_0
Stéphane Andrieux; Thouraya Nouri Baranger. Emerging crack front identification from tangential surface displacements. Comptes Rendus. Mécanique, Volume 340 (2012) no. 8, pp. 565-574. doi : 10.1016/j.crme.2012.06.002. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2012.06.002/

[1] M.A. Sutton; M. Cheng; W.H. Peters; Y.S. Chao; S.R. McNeill Application of an optimized digital correlation method to planar deformation analysis, Image Vis. Comput., Volume 4 (1986), pp. 143-150

[2] B. Wagne; S. Roux; F. Hild Spectral approach to displacement evaluation from image analysis, Eur. Phys. J., Appl. Phys., Volume 17 (2002), pp. 247-252

[3] S. Andrieux, T.N. Baranger, Three-dimensional recovery of stress intensity factors and energy release rates from surface full-field measurements, submitted for publication.

[4] J. Réthoré; S. Roux; F. Hild Noise-robust stress intensity factor determination from kinematic field measurements, Eng. Fract. Mech., Volume 75 (2008), pp. 3763-3781

[5] S. Yoneyama; T. Ogawa; Y. Kobayashi Evaluating mixed-mode stress intensity factors from full-field displacement fields obtained by optical methods, Eng. Fract. Mech., Volume 74 (2006) no. 9, pp. 1399-1412

[6] M.L. Kadri; J. Ben Abdallah; T.N. Baranger Identification of internal cracks in a three-dimensional solid body via Steklov–Poincaré approaches, C. R. Mecanique, Volume 339 (2011) no. 10, pp. 674-681

[7] T.N. Baranger; S. Andrieux Constitutive law gap functionals for solving the Cauchy problem for linear elliptic PDE, Appl. Math. Comput., Volume 218 (2011) no. 5, pp. 1970-1989

[8] S. Andrieux; T.N. Baranger An energy error-based method for the resolution of the Cauchy problem in 3D linear elasticity, Comput. Methods Appl. Mech. Engrg., Volume 197 (2008) no. 9–12, pp. 902-920

[9] T.N. Baranger; S. Andrieux An optimization approach for the Cauchy problem in linear elasticity, J. Multidiscip. Optim., Volume 35 (2008) no. 2, pp. 141-152

[10] S. Andrieux; A. Ben Abda; H.D. Bui Reciprocity principle and crack identification, Inverse Problems, Volume 15 (1999) no. 1, pp. 59-65

[11] A. Fursikov Optimal Control of Distributed Systems—Theory and Applications, Transl. Math. Monogr., vol. 187, American Mathematical Society, Providence, RI, 2000

[12] R. Rischette; T.N. Baranger; N. Debit Numerical analysis of an energy-like minimization method to solve the Cauchy problem with noisy data, J. Comput. Appl. Math., Volume 235 (2011), pp. 3257-3269

[13] H. Brezis Analyse fonctionnelle : Théorie et applications, Dunod, Paris, 1999

[14] Comsol Multiphysics, Finite Element Analysis Software http://www.comsol.com

[15] MATLAB, The MathWorks Inc., 2012.

[16] F.B. Belgacem Why is the Cauchy problem severely ill-posed?, Inverse Problems, Volume 23 (2007), pp. 823-836

[17] A. Chambolle; P.L. Lions Image recovery via total variation minimization and related problems, Numer. Math., Volume 76 (1997), pp. 167-188

Cited by Sources:

Comments - Policy