The interaction “viscous fluid–thin plate” is considered when the thickness of the plate, ε, tends to zero, while the density and the Youngʼs modulus of the plate are of order
Accepté le :
Publié le :
Grigory P. Panasenko 1 ; Ruxandra Stavre 2
@article{CRMECA_2012__340_8_590_0, author = {Grigory P. Panasenko and Ruxandra Stavre}, title = {Asymptotic analysis of a viscous fluid{\textendash}thin plate interaction: {Periodic} flow}, journal = {Comptes Rendus. M\'ecanique}, pages = {590--595}, publisher = {Elsevier}, volume = {340}, number = {8}, year = {2012}, doi = {10.1016/j.crme.2012.06.001}, language = {en}, }
TY - JOUR AU - Grigory P. Panasenko AU - Ruxandra Stavre TI - Asymptotic analysis of a viscous fluid–thin plate interaction: Periodic flow JO - Comptes Rendus. Mécanique PY - 2012 SP - 590 EP - 595 VL - 340 IS - 8 PB - Elsevier DO - 10.1016/j.crme.2012.06.001 LA - en ID - CRMECA_2012__340_8_590_0 ER -
Grigory P. Panasenko; Ruxandra Stavre. Asymptotic analysis of a viscous fluid–thin plate interaction: Periodic flow. Comptes Rendus. Mécanique, Volume 340 (2012) no. 8, pp. 590-595. doi : 10.1016/j.crme.2012.06.001. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2012.06.001/
[1] Asymptotic analysis of a periodic flow in a thin channel with visco-elastic wall, J. Math. Pures Appl., Volume 85 (2006), pp. 558-579
[2] Multi-Scale Modelling for Structures and Composites, Springer, 2005
- Error estimates for an effective model for the interaction between a thin fluid film and an elastic plate, Rad Hrvatske Akademije Znanosti i Umjetnosti. Matematičke Znanosti, Volume 564 (2025), pp. 329-345 | DOI:10.21857/ygjwrc27zy | Zbl:7990165
- 3D structure-2D plate-1D rod interaction problem, Mathematical Methods in the Applied Sciences, Volume 46 (2023) no. 8, pp. 9053-9078 | DOI:10.1002/mma.9035 | Zbl:1538.74105
- Justification of a nonlinear sixth-order thin-film equation as the reduced model for a fluid-structure interaction problem, Nonlinearity, Volume 35 (2022) no. 8, pp. 4695-4726 | DOI:10.1088/1361-6544/ac7d89 | Zbl:1504.35295
- Rigorous derivation of a linear sixth-order thin-film equation as a reduced model for thin fluid-thin structure interaction problems, Applied Mathematics and Optimization, Volume 84 (2021) no. 2, pp. 2245-2288 | DOI:10.1007/s00245-020-09709-9 | Zbl:1487.35314
- A review on rigorous derivation of reduced models for fluid-structure interaction systems, Waves in flows. The 2018 Prague-sum workshop lectures, Prague, Czech Republic, August 27–31, 2018, Cham: Birkhäuser, 2021, pp. 203-237 | DOI:10.1007/978-3-030-68144-9_8 | Zbl:1478.76004
- Viscous fluid-thin elastic plate interaction: asymptotic analysis with respect to the rigidity and density of the plate, Applied Mathematics and Optimization, Volume 81 (2020) no. 1, pp. 141-194 | DOI:10.1007/s00245-018-9480-2 | Zbl:1431.76101
- Optimization of the blood pressure with the control in coefficients, Evolution Equations and Control Theory, Volume 9 (2020) no. 1, pp. 131-151 | DOI:10.3934/eect.2020019 | Zbl:1431.49002
- Three dimensional asymptotic analysis of an axisymmetric flow in a thin tube with thin stiff elastic wall, Journal of Mathematical Fluid Mechanics, Volume 22 (2020) no. 2, p. 35 (Id/No 20) | DOI:10.1007/s00021-020-0484-8 | Zbl:1434.74052
- Viscous fluid-thin cylindrical elastic body interaction: asymptotic analysis on contrasting properties, Applicable Analysis, Volume 98 (2019) no. 1-2, pp. 162-216 | DOI:10.1080/00036811.2018.1442000 | Zbl:1409.74013
- 3D structure-2D plate interaction model, Mathematics and Mechanics of Solids, Volume 24 (2019) no. 10, pp. 3354-3377 | DOI:10.1177/1081286519846202 | Zbl:7273370
- Asymptotic of the solution of the contact problem for a thin elastic plate and a viscoelastic layer, Doklady Mathematics, Volume 97 (2018) no. 2, pp. 109-112 | DOI:10.1134/s1064562418020023 | Zbl:1452.74085
- Asymptotic analysis of a thin elastic plate-viscoelastic layer interaction, Multiscale Modeling Simulation, Volume 16 (2018) no. 3, pp. 1258-1282 | DOI:10.1137/17m1138662 | Zbl:1411.35022
- Acoustics of permeo-elastic materials, Journal of Fluid Mechanics, Volume 828 (2017), p. 135 | DOI:10.1017/jfm.2017.505
- Asymptotic analysis of a thin rigid stratified elastic plate – viscous fluid interaction problem, Applicable Analysis, Volume 95 (2016) no. 7, pp. 1467-1506 | DOI:10.1080/00036811.2015.1132311 | Zbl:1357.35087
- A boundary control problem for the blood flow in venous insufficiency. The general case, Nonlinear Analysis. Real World Applications, Volume 29 (2016), pp. 98-116 | DOI:10.1016/j.nonrwa.2015.11.003 | Zbl:1331.49005
- Finite volume implementation of the method of asymptotic partial domain decomposition for the heat equation on a thin structure, Russian Journal of Mathematical Physics, Volume 22 (2015) no. 2, pp. 237-263 | DOI:10.1134/s1061920815020107 | Zbl:1327.35129
- Viscous fluid-thin cylindrical elastic layer interaction: asymptotic analysis, Applicable Analysis, Volume 93 (2014) no. 10, pp. 2032-2056 | DOI:10.1080/00036811.2014.911843 | Zbl:1296.76125
Cité par 17 documents. Sources : Crossref, zbMATH
Commentaires - Politique
Vous devez vous connecter pour continuer.
S'authentifier