Comptes Rendus
Asymptotic analysis of a viscous fluid–thin plate interaction: Periodic flow
Comptes Rendus. Mécanique, Volume 340 (2012) no. 8, pp. 590-595.

The interaction “viscous fluid–thin plate” is considered when the thickness of the plate, ε, tends to zero, while the density and the Youngʼs modulus of the plate are of order ε1 and ε3, respectively. The thickness of the fluid layer is of the order of one. An asymptotic expansion is constructed and the error estimates are proved. The leading term of the asymptotic expansion is the solution of the interaction problem “fluid-Kirchoff plate”. The method of asymptotic partial domain decomposition is discussed: the main part of the plate is described by a 1D model while a small part is simulated by the 2D elasticity equations, with appropriate junction conditions.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crme.2012.06.001
Mots-clés : Fluid mechanics, Dynamical systems, Fluid structure interaction, Asymptotic analysis

Grigory P. Panasenko 1 ; Ruxandra Stavre 2

1 Institute Camille-Jordan, UMR CNRS 5208, PRES University of Lyon, University of Saint-Etienne, 23, rue Dr Paul-Michelon, 42023 Saint-Etienne, France
2 Institute of Mathematics “Simion Stoilow”, Romanian Academy, P.O. Box 1-764, 014700 Bucharest, Romania
@article{CRMECA_2012__340_8_590_0,
     author = {Grigory P. Panasenko and Ruxandra Stavre},
     title = {Asymptotic analysis of a viscous fluid{\textendash}thin plate interaction: {Periodic} flow},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {590--595},
     publisher = {Elsevier},
     volume = {340},
     number = {8},
     year = {2012},
     doi = {10.1016/j.crme.2012.06.001},
     language = {en},
}
TY  - JOUR
AU  - Grigory P. Panasenko
AU  - Ruxandra Stavre
TI  - Asymptotic analysis of a viscous fluid–thin plate interaction: Periodic flow
JO  - Comptes Rendus. Mécanique
PY  - 2012
SP  - 590
EP  - 595
VL  - 340
IS  - 8
PB  - Elsevier
DO  - 10.1016/j.crme.2012.06.001
LA  - en
ID  - CRMECA_2012__340_8_590_0
ER  - 
%0 Journal Article
%A Grigory P. Panasenko
%A Ruxandra Stavre
%T Asymptotic analysis of a viscous fluid–thin plate interaction: Periodic flow
%J Comptes Rendus. Mécanique
%D 2012
%P 590-595
%V 340
%N 8
%I Elsevier
%R 10.1016/j.crme.2012.06.001
%G en
%F CRMECA_2012__340_8_590_0
Grigory P. Panasenko; Ruxandra Stavre. Asymptotic analysis of a viscous fluid–thin plate interaction: Periodic flow. Comptes Rendus. Mécanique, Volume 340 (2012) no. 8, pp. 590-595. doi : 10.1016/j.crme.2012.06.001. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2012.06.001/

[1] G.P. Panasenko; R. Stavre Asymptotic analysis of a periodic flow in a thin channel with visco-elastic wall, J. Math. Pures Appl., Volume 85 (2006), pp. 558-579

[2] G. Panasenko Multi-Scale Modelling for Structures and Composites, Springer, 2005

  • A. Ćurković Error estimates for an effective model for the interaction between a thin fluid film and an elastic plate, Rad Hrvatske Akademije Znanosti i Umjetnosti. Matematičke Znanosti, Volume 564 (2025), pp. 329-345 | DOI:10.21857/ygjwrc27zy | Zbl:7990165
  • Matko Ljulj; Josip Tambača 3D structure-2D plate-1D rod interaction problem, Mathematical Methods in the Applied Sciences, Volume 46 (2023) no. 8, pp. 9053-9078 | DOI:10.1002/mma.9035 | Zbl:1538.74105
  • Mario Bukal; Boris Muha Justification of a nonlinear sixth-order thin-film equation as the reduced model for a fluid-structure interaction problem, Nonlinearity, Volume 35 (2022) no. 8, pp. 4695-4726 | DOI:10.1088/1361-6544/ac7d89 | Zbl:1504.35295
  • Mario Bukal; Boris Muha Rigorous derivation of a linear sixth-order thin-film equation as a reduced model for thin fluid-thin structure interaction problems, Applied Mathematics and Optimization, Volume 84 (2021) no. 2, pp. 2245-2288 | DOI:10.1007/s00245-020-09709-9 | Zbl:1487.35314
  • Mario Bukal; Boris Muha A review on rigorous derivation of reduced models for fluid-structure interaction systems, Waves in flows. The 2018 Prague-sum workshop lectures, Prague, Czech Republic, August 27–31, 2018, Cham: Birkhäuser, 2021, pp. 203-237 | DOI:10.1007/978-3-030-68144-9_8 | Zbl:1478.76004
  • Grigory P. Panasenko; Ruxandra Stavre Viscous fluid-thin elastic plate interaction: asymptotic analysis with respect to the rigidity and density of the plate, Applied Mathematics and Optimization, Volume 81 (2020) no. 1, pp. 141-194 | DOI:10.1007/s00245-018-9480-2 | Zbl:1431.76101
  • Ruxandra Stavre Optimization of the blood pressure with the control in coefficients, Evolution Equations and Control Theory, Volume 9 (2020) no. 1, pp. 131-151 | DOI:10.3934/eect.2020019 | Zbl:1431.49002
  • G. P. Panasenko; R. Stavre Three dimensional asymptotic analysis of an axisymmetric flow in a thin tube with thin stiff elastic wall, Journal of Mathematical Fluid Mechanics, Volume 22 (2020) no. 2, p. 35 (Id/No 20) | DOI:10.1007/s00021-020-0484-8 | Zbl:1434.74052
  • Grigory P. Panasenko; R. Stavre Viscous fluid-thin cylindrical elastic body interaction: asymptotic analysis on contrasting properties, Applicable Analysis, Volume 98 (2019) no. 1-2, pp. 162-216 | DOI:10.1080/00036811.2018.1442000 | Zbl:1409.74013
  • Matko Ljulj; Josip Tambača 3D structure-2D plate interaction model, Mathematics and Mechanics of Solids, Volume 24 (2019) no. 10, pp. 3354-3377 | DOI:10.1177/1081286519846202 | Zbl:7273370
  • Grigory P. Panasenko; A. E. Elbert Asymptotic of the solution of the contact problem for a thin elastic plate and a viscoelastic layer, Doklady Mathematics, Volume 97 (2018) no. 2, pp. 109-112 | DOI:10.1134/s1064562418020023 | Zbl:1452.74085
  • Frédéric Chardard; Alexander Elbert; Grigory Panasenko Asymptotic analysis of a thin elastic plate-viscoelastic layer interaction, Multiscale Modeling Simulation, Volume 16 (2018) no. 3, pp. 1258-1282 | DOI:10.1137/17m1138662 | Zbl:1411.35022
  • Rodolfo Venegas; Claude Boutin Acoustics of permeo-elastic materials, Journal of Fluid Mechanics, Volume 828 (2017), p. 135 | DOI:10.1017/jfm.2017.505
  • Irina Malakhova-Ziablova; Grigory Panasenko; Ruxandra Stavre Asymptotic analysis of a thin rigid stratified elastic plate – viscous fluid interaction problem, Applicable Analysis, Volume 95 (2016) no. 7, pp. 1467-1506 | DOI:10.1080/00036811.2015.1132311 | Zbl:1357.35087
  • Ruxandra Stavre A boundary control problem for the blood flow in venous insufficiency. The general case, Nonlinear Analysis. Real World Applications, Volume 29 (2016), pp. 98-116 | DOI:10.1016/j.nonrwa.2015.11.003 | Zbl:1331.49005
  • G. Panasenko; M.-C. Viallon Finite volume implementation of the method of asymptotic partial domain decomposition for the heat equation on a thin structure, Russian Journal of Mathematical Physics, Volume 22 (2015) no. 2, pp. 237-263 | DOI:10.1134/s1061920815020107 | Zbl:1327.35129
  • G. P. Panasenko; R. Stavre Viscous fluid-thin cylindrical elastic layer interaction: asymptotic analysis, Applicable Analysis, Volume 93 (2014) no. 10, pp. 2032-2056 | DOI:10.1080/00036811.2014.911843 | Zbl:1296.76125

Cité par 17 documents. Sources : Crossref, zbMATH

Commentaires - Politique


Il n'y a aucun commentaire pour cet article. Soyez le premier à écrire un commentaire !


Publier un nouveau commentaire:

Publier une nouvelle réponse: