Comptes Rendus
A dynamic sub-grid scale model for large eddy simulation of turbulent flows in a lid-driven cubical cavity
Comptes Rendus. Mécanique, Volume 340 (2012) no. 10, pp. 721-730.

This work undertakes a numerical study of turbulent incompressible flows in lid-driven cubical cavities using Large Eddy Simulation and two sub-grid scale models, i.e., the WALE (Wall-Adapting Local Eddy-viscosity) model and the corresponding dynamic sub-grid model (DSGS). In the process of using DSGS, an optimal value of constant CW of the WALE model was determined for a pre-set Reynolds number Re=104. The computed numerical results showed very good agreement with those Direct Numerical Simulation (DNS) results and with the experimental measurements found in the literature. Optimal values of CW were determined afterwards with the DSGS model and they were proposed for the analysis of higher Reynolds number turbulent flows. At the end, a power law correlation between CW and Re was proposed for the range 104Re3×104.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crme.2012.10.001
Mots clés : Turbulence, Lid-driven cubical cavity, Incompressible fluid, Large eddy simulation, WALE model, Dynamic sub-grid scale
Nader Ben-Cheikh 1 ; Faycel Hammami 1 ; Antonio Campo 2 ; Brahim Ben-Beya 1

1 Laboratory of Fluid Dynamics, Physics Department, Faculty of Science of Tunis, Campus Universitaire, 2092 El-Manar II, Tunisia
2 Department of Mechanical Engineering, The University of Texas at San Antonio, San Antonio, TX 78249, USA
@article{CRMECA_2012__340_10_721_0,
     author = {Nader Ben-Cheikh and Faycel Hammami and Antonio Campo and Brahim Ben-Beya},
     title = {A dynamic sub-grid scale model for large eddy simulation of turbulent flows in a lid-driven cubical cavity},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {721--730},
     publisher = {Elsevier},
     volume = {340},
     number = {10},
     year = {2012},
     doi = {10.1016/j.crme.2012.10.001},
     language = {en},
}
TY  - JOUR
AU  - Nader Ben-Cheikh
AU  - Faycel Hammami
AU  - Antonio Campo
AU  - Brahim Ben-Beya
TI  - A dynamic sub-grid scale model for large eddy simulation of turbulent flows in a lid-driven cubical cavity
JO  - Comptes Rendus. Mécanique
PY  - 2012
SP  - 721
EP  - 730
VL  - 340
IS  - 10
PB  - Elsevier
DO  - 10.1016/j.crme.2012.10.001
LA  - en
ID  - CRMECA_2012__340_10_721_0
ER  - 
%0 Journal Article
%A Nader Ben-Cheikh
%A Faycel Hammami
%A Antonio Campo
%A Brahim Ben-Beya
%T A dynamic sub-grid scale model for large eddy simulation of turbulent flows in a lid-driven cubical cavity
%J Comptes Rendus. Mécanique
%D 2012
%P 721-730
%V 340
%N 10
%I Elsevier
%R 10.1016/j.crme.2012.10.001
%G en
%F CRMECA_2012__340_10_721_0
Nader Ben-Cheikh; Faycel Hammami; Antonio Campo; Brahim Ben-Beya. A dynamic sub-grid scale model for large eddy simulation of turbulent flows in a lid-driven cubical cavity. Comptes Rendus. Mécanique, Volume 340 (2012) no. 10, pp. 721-730. doi : 10.1016/j.crme.2012.10.001. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2012.10.001/

[1] M. Henkes; C.J. Hoogendoorn Natural convection flow in a square cavity calculated with low-Reynolds-number turbulence models, Int. J. Heat Mass Transfer, Volume 34 (1991), pp. 377-388

[2] L. Lijun; L. Jun; F. Zhenping A numerical method for simulation of attached cavitation flows, Int. J. Numer. Methods Fluids, Volume 52 (2006), pp. 639-658

[3] K. Kim; A.I. Sirviente; R.F. Beck The complementary RANS equations for the simulation of viscous flows, Int. J. Numer. Methods Fluids, Volume 48 (2005), pp. 199-229

[4] H. Raiesi; U. Piomelli; A. Pollard Evaluation of turbulence models using direct numerical and large-eddy simulation data, J. Fluids Eng., Volume 133 (2011)

[5] P. Sagaut Large-Eddy Simulations for Incompressible Flows: An Introduction, Springer, Berlin, Germany, 2001

[6] J.S. Smagorinsky General circulation experiments with the primitive equations: I. The basic experiment, Mon. Weather Rev., Volume 91 (1963), pp. 99-136

[7] M. Germano; U. Piomelli; P. Moin; W.H. Cabot A dynamic subgrid-scale eddy viscosity model, Phys. Fluids A, Volume 3 (1991), pp. 1760-1765

[8] D.K. Lilly A proposed modification of the Germano subgrid-scale closure method, Phys. Fluids A, Volume 4 (1992), pp. 633-635

[9] F. Nicoud; F. Ducros Subgrid-scale modelling based on the square of the velocity gradient tensor, Flow Turbul. Combust., Volume 62 (1999) no. 3, pp. 183-200

[10] M. Lesieur; O. Metais; P. Comte Large Eddy Simulation of Turbulence, Cambridge University Press, London, England, 2005

[11] B. Ben-Beya, Simulation numérique dʼun écoulement bidimensionnel en aval dʼune marche descendante, PhD Thesis, Faculty of Sciences of Tunis, El-Manar II, Tunisia, 1995.

[12] N. Ben-Cheikh, Etude de la convection naturelle laminaire et de lʼécoulement turbulent dans une cavité entraînée par simulation des grandes échelles, PhD Thesis, Faculty of Sciences of Tunis, El-Manar II, Tunisia, 2008.

[13] Y. Achdou; J.L. Guermond Convergence analysis of a finite element projection Lagrange–Galerkin method for the incompressible Navier–Stokes equations, SIAM J. Numer. Anal., Volume 37 (2000), pp. 799-826

[14] M. Germano; U. Piomelli; P. Moin; W.H. Cabot A dynamic subgrid-scale eddy viscosity model, Phys. Fluids A, Volume 7 (1991), pp. 1760-1765

[15] J.R. Koseff; R.L. Street The lid-driven cavity flow: a synthesis of qualitative and quantitative observations, J. Fluid Mech., Volume 106 (1984), pp. 390-398

[16] A.K. Prasad; J. Koseff Reynolds number and end-wall effects on a lid-driven cavity flow, Phys. Fluids A, Volume 1 (1989), pp. 208-218

[17] A. Yeckel; J.W. Smith; J.J. Derby Parallel finite element calculation of flow in a three-dimensional lid-driven cavity using the CM-5 and T3D, Int. J. Numer. Methods Fluids, Volume 24 (1997), pp. 1449-1461

[18] E. Leriche; S. Gavrilakis Direct numerical simulation of the flow in a lid-driven cubical cavity, Phys. Fluids, Volume 12 (2000), pp. 1363-1376

[19] E. Leriche Direct numerical simulation in a lid-driven cubical cavity at high Reynolds number by a Chebyshev spectral method, J. Sci. Comput., Volume 27 (2006), pp. 335-345

[20] R. Bouffanais; M. Deville; P. Fischer; E. Leriche; D. Weill Large-eddy simulation of the lid-driven cubic cavity flow by the spectral element method, J. Sci. Comput., Volume 27 (2006), pp. 151-162

[21] R. Bouffanais; M. Deville; E. Leriche Large-eddy simulation of the flow in a lid-driven cubical cavity, Phys. Fluids, Volume 19 (2007), pp. 1-20

[22] J.L. Guermond; P.D. Minev Start-up flow in a three-dimensional lid-driven cavity by means of a massively parallel direction splitting algorithm, Int. J. Numer. Methods Fluids, Volume 68 (2012), pp. 856-871

[23] A.A. Wray, J.C.R. Hunt, Algorithms for classification of turbulent structures, in: Proceedings of the IUTAM Symposium on Topological Fluid Mechanics, 1989, pp. 95–104.

[24] J. Deardoff The use of sub-grid transport equations in a three-dimensional model of atmospheric turbulence, J. Fluids Eng., Volume 95 (1973), pp. 429-438

[25] A. Scotti; C. Meneveau; D.K. Lilly Generalized Smagorinsky model for anisotropic grids, Phys. Fluids A, Volume 5 (1993), pp. 2306-2308

[26] U. Piomelli; J. Liu Large-eddy simulation of rotating channel flows using a localized dynamic model, Phys. Fluids, Volume 7 (1995) no. 4, pp. 839-848

[27] S.V. Patankar Numerical Heat Transfer and Fluid Flow, McGraw–Hill, New York, 1980 (pp. 113–137)

[28] B.P. Leonard A stable and accurate convective modelling procedure based on quadratic upstream interpolation, Comput. Methods Appl. Mech. Eng., Volume 19 (1979), pp. 59-98

[29] B.P. Leonard Templates for the Solution of Linear Systems: Building Blocks for Iterative Methods, SIAM, Philadelphia, PA, USA, 1994

[30] N. Ben-Cheikh; B. Ben-Beya; T. Lili Benchmark solution for time-dependent natural convection flows with an accelerated full-multigrid method, Numer. Heat Transf. B, Volume 52 (2007), pp. 131-151

[31] G.A. Gerolymos; I. Vallet Robust implicit multigrid Reynolds–Stress model computation of 3D turbomachinery flows, J. Fluids Eng., Volume 129 (2007)

[32] T.T. Brandt Usability of explicit filtering in large eddy simulation with a low-order numerical scheme and different subgrid-scale models, Int. J. Numer. Methods Fluids, Volume 57 (2008), pp. 905-928

[33] G. Zhaolin; J. Jianying; Z. Yunwei; S. Junwei Large eddy simulation using a dynamic mixing length subgrid-scale model, Int. J. Numer. Methods Fluids, Volume 69 (2012), pp. 1457-1472

[34] L. Bricteux; M. Duponcheel; G. Winckelmans; S. Junwei A multiscale subgrid model for both free vortex flows and wall-bounded flow, Phys. Fluids, Volume 21 (2009), p. 105102/1-105102/12

[35] H. Baya Toda, K. Truffin, F. Nicoud, Is the dynamic procedure appropriate for all SGS models?, in: J.C.F. Pereira, A. Sequeira (Eds.), V European Conference on Computational Fluid Dynamics, ECCOMAS, Lisbon, Portugal, June 2010, pp. 14–17.

[36] J. Lee; H. Choi; N. Park Dynamic global model for large eddy simulation of transient flow, Phys. Fluids, Volume 22 (2010), p. 075106

[37] F. Nicoud; H. Baya Toda; O. Cabrit; S. Bose; J. Lee Using singular values to build a sub-grid scale model for large eddy simulations, Phys. Fluids, Volume 23 (2011), p. 085106

[38] J. Meyers; P. Sagaut On the model coefficients for the standard and the variational multi-scale Smagorinsky model, J. Fluid Mech., Volume 569 (2006), p. 287319

Cité par Sources :

Commentaires - Politique


Ces articles pourraient vous intéresser

Compressible and low Mach number LES of a swirl experimental burner

David Barré; Matthias Kraushaar; Gabriel Staffelbach; ...

C. R. Méca (2013)


Effet du rapport de forme transverse sur l'écoulement tridimensionnel d'un fluide incompressible dans une cavité entraînée

Nader Ben Cheikh; Nasreddine Ouertatani; Brahim Ben Beya; ...

C. R. Méca (2008)


Eulerian and Lagrangian Large-Eddy Simulations of an evaporating two-phase flow

J.M. Senoner; M. Sanjosé; T. Lederlin; ...

C. R. Méca (2009)