Comptes Rendus
Manufacturing and mechanical properties of calcium phosphate biomaterials
Comptes Rendus. Mécanique, Volume 340 (2012) no. 10, pp. 715-720.

In this study, the influence of powder manufacturing and sintering temperature on densification, microstructure and mechanical properties of dense β-tricalcium phosphate (β-TCP) bioceramic has been studied. Densification results show that the β-TCP can be sintered at 1160 °C for 3 hours to have good density and high performance mechanic properties (Vickers hardness, toughness and Youngʼs modulus). X-ray diffraction and SEM microscopy are used to check the microstructure changes during the sintering temperature. The used processing of β-TCP ceramic improved its densification, microstructure homogeneity and mechanical properties.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crme.2012.09.005
Mots clés : Material engineering, β-tricalcium phosphate, Bioceramics, Densification, Mechanical properties
S. Laasri 1 ; M. Taha 1 ; E.K. Hlil 2 ; A. Laghzizil 3 ; A. Hajjaji 4

1 Laboratoire de thermodynamique metallurgie et rheologie des materiaux, université Ibn-Zohr, faculté des sciences, BP 8106, cite Dakhla, Agadir, Morocco
2 Institut Néel, université Joseph-Fourier, BP 166, 38042 Grenoble cedex 9, France
3 Laboratoire de chimie physique générale, université Mohammed V-Agdal, BP 1014, Rabat, Morocco
4 Ecole nationale des sciences appliquées dʼEl Jadida, BP 1166, El Jadida, Morocco
@article{CRMECA_2012__340_10_715_0,
     author = {S. Laasri and M. Taha and E.K. Hlil and A. Laghzizil and A. Hajjaji},
     title = {Manufacturing and mechanical properties of calcium phosphate biomaterials},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {715--720},
     publisher = {Elsevier},
     volume = {340},
     number = {10},
     year = {2012},
     doi = {10.1016/j.crme.2012.09.005},
     language = {en},
}
TY  - JOUR
AU  - S. Laasri
AU  - M. Taha
AU  - E.K. Hlil
AU  - A. Laghzizil
AU  - A. Hajjaji
TI  - Manufacturing and mechanical properties of calcium phosphate biomaterials
JO  - Comptes Rendus. Mécanique
PY  - 2012
SP  - 715
EP  - 720
VL  - 340
IS  - 10
PB  - Elsevier
DO  - 10.1016/j.crme.2012.09.005
LA  - en
ID  - CRMECA_2012__340_10_715_0
ER  - 
%0 Journal Article
%A S. Laasri
%A M. Taha
%A E.K. Hlil
%A A. Laghzizil
%A A. Hajjaji
%T Manufacturing and mechanical properties of calcium phosphate biomaterials
%J Comptes Rendus. Mécanique
%D 2012
%P 715-720
%V 340
%N 10
%I Elsevier
%R 10.1016/j.crme.2012.09.005
%G en
%F CRMECA_2012__340_10_715_0
S. Laasri; M. Taha; E.K. Hlil; A. Laghzizil; A. Hajjaji. Manufacturing and mechanical properties of calcium phosphate biomaterials. Comptes Rendus. Mécanique, Volume 340 (2012) no. 10, pp. 715-720. doi : 10.1016/j.crme.2012.09.005. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2012.09.005/

[1] I.R. Zerbo; S. Zijderveld; A.D. Boer; A.L. Bronckers; G.D. Lange; C.M.T. Bruggenkate; E.H. Burger Histomorphometry of human sinus floor augmentation using a porous β-tricalcium phosphate: a prospective study, Clin. Oral Implants Res., Volume 15 (2004), pp. 724-732

[2] A. Madeo; T. Lekszycki; F. dell Isola A continuum model for the bio-mechanical interactions between living tissue and bio-resorbable graft after bone reconstructive surgery, C. R. Mecanique, Volume 339 (2011), pp. 625-640

[3] V. Sansalone; T. Lemaire; S. Naili Modélisation multi-échelle des propriétés mécaniques de lʼos : étude à lʼéchelle de la fibrille, C. R. Mecanique, Volume 337 (2007), pp. 436-442

[4] R.Z. LeGros Calcium Phosphates in Oral Biology and Medicine, Monographs in Oral Science, vol. 15, Karger, Basel, 1991

[5] J.C. Elliot; R. Murugan; S. Ramakrishna Bioresorbable Composite Bone Paste Using Polysaccharide Based Nanohydroxyapatite, Studies in Inorganic Chemistry, Elsevier, Amsterdam, 1994

[6] A.O. Ransford; T. Morley; M.A. Edgar; P. Webb; N. Passuti; D. Chopin; C. Morin; F. Michel; C. Garin; D. Pries Synthetic porous ceramic compared with autograft in scoliosis surgery, J. Bone Joint Surg. Br. B, Volume 80 (1998), pp. 13-18

[7] D. Tadic; M. Epple A thorough physicochemical characterisation of 14 calcium phosphate-based bone substitution materials in comparison to natural bone, Biomaterials, Volume 25 (2004), pp. 987-994

[8] M. Niinomi Mechanical biocompatibilities of titanium alloys for biomedical applications, J. Mech. Behav. Biomed. Mater., Volume 1 (2008), pp. 30-42

[9] J.D. Currey The effect of porosity and mineral content on the Youngʼs modulus of elasticity of compact bone, J. Biomech., Volume 21 (1988), pp. 131-139

[10] K. de Groot Effect of porosity and physicochemical properties on the stability, resorption and strength of calcium phosphate ceramics, Ann. N.Y. Acad. Sci., Volume 523 (1988), pp. 227-233

[11] G. Goller; F.N. Oktar Sintering effects on mechanical properties of biologically derived dentine hydroxyapatite, Mater. Lett., Volume 56 (2002), pp. 142-147

[12] H.H. Horch; R. Sader; C. Pautke; A. Neff; H. Deppe; A. Kolk Synthetic pure-phase beta-tricalcium phosphate ceramic granules (Cerasorb) for bone regeneration in the reconstructive surgery of the jaws, Int. J. Oral Maxillofac. Surg., Volume 35 (2006), pp. 708-713

[13] H. Yuan; K. Kurashina; J.D. Bruijn; Y. Li; K.D. Groot; X. Zhang A preliminary study on osteoinduction of two kinds of calcium phosphate ceramics, Biomaterials, Volume 20 (1999), pp. 1799-1806

[14] S. Laasri; M. Taha; A. Laghzizil; E.K. Hlil; J. Chevalier The affect of densification and dehydroxylation on the mechanical properties of stoichiometric hydroxyapatite bioceramics, Mater. Res. Bull., Volume 45 (2010), pp. 1433-1437

[15] S. Ramesh; C.Y. Tan Rapid densification of nanocrystalline hydroxyapatite for biomedical applications, Ceram. Int., Volume 33 (2007), pp. 1363-1367

[16] K. Niihara Indentation microstructure of ceramics—its application and problems, J. Ceram. Soc. Jpn., Volume 20 (1985), pp. 12-18

[17] C. Benaqqa, Etude de la propagation sous critique de fissures dans les phosphates de calcium : cas de lʼhydroxyapatite et du phosphate tricalcique, Thèse, INSA, Lyon, France, 2003.

[18] A. Essaddek; M. Elgadi; E. Mejdoubi; L.L. Elansari; K. Moradi; M. Karroua Investigation by infrared absorption spectroscopy into the chemical mechanisms of the wet process synthesis of some calcium phosphates, J. Phys. IV France, Volume 123 (2005), pp. 233-236

[19] S.J. Gadaleta; E.P. Paschalis; F. Betts; R. Mendelsohn; A.L. Boskey Fourier transform infrared spectroscopy of the solution-mediated conversion of amorphous calcium phosphate to hydroxyapatite: new correlations between X-ray diffraction and infrared data, Calcif. Tissue Int., Volume 58 (1996), pp. 9-16

[20] F.H. Perera; F.J. Martínez-Vazquez; P. Miranda; A.L. Ortiz; A. Pajares Clarifying the effect of sintering conditions on the microstructure and mechanical properties of β-tricalcium phosphate, Ceram. Int., Volume 36 (2010), pp. 1929-1935

[21] L. El Hammari; T. Coradin; A. Laghzizil; A. Saoiabi; P. Barboux Mesoporous hydroxyapatites elabored in ethanol–water media: structure and surface properties, Mater. Chem. Phys., Volume 104 (2007), pp. 448-453

Cité par Sources :

Commentaires - Politique


Ces articles pourraient vous intéresser

Sintering and mechanical properties of magnesium-containing fluorapatite

Mustapha Hidouri; Khaled Boughzala; Jean Pierre Lecompte; ...

C. R. Phys (2009)


Frittage du phosphate tricalcique

Foued Ben Ayed; Kamel Chaari; Jamel Bouaziz; ...

C. R. Phys (2006)


Élaboration et caractérisation d'un biomatériau à base de phosphates de calcium

Foued Ben Ayed; Jamel Bouaziz

C. R. Phys (2007)