In this study, the influence of powder manufacturing and sintering temperature on densification, microstructure and mechanical properties of dense β-tricalcium phosphate (β-TCP) bioceramic has been studied. Densification results show that the β-TCP can be sintered at 1160 °C for 3 hours to have good density and high performance mechanic properties (Vickers hardness, toughness and Youngʼs modulus). X-ray diffraction and SEM microscopy are used to check the microstructure changes during the sintering temperature. The used processing of β-TCP ceramic improved its densification, microstructure homogeneity and mechanical properties.
Accepted:
Published online:
S. Laasri 1; M. Taha 1; E.K. Hlil 2; A. Laghzizil 3; A. Hajjaji 4
@article{CRMECA_2012__340_10_715_0, author = {S. Laasri and M. Taha and E.K. Hlil and A. Laghzizil and A. Hajjaji}, title = {Manufacturing and mechanical properties of calcium phosphate biomaterials}, journal = {Comptes Rendus. M\'ecanique}, pages = {715--720}, publisher = {Elsevier}, volume = {340}, number = {10}, year = {2012}, doi = {10.1016/j.crme.2012.09.005}, language = {en}, }
TY - JOUR AU - S. Laasri AU - M. Taha AU - E.K. Hlil AU - A. Laghzizil AU - A. Hajjaji TI - Manufacturing and mechanical properties of calcium phosphate biomaterials JO - Comptes Rendus. Mécanique PY - 2012 SP - 715 EP - 720 VL - 340 IS - 10 PB - Elsevier DO - 10.1016/j.crme.2012.09.005 LA - en ID - CRMECA_2012__340_10_715_0 ER -
%0 Journal Article %A S. Laasri %A M. Taha %A E.K. Hlil %A A. Laghzizil %A A. Hajjaji %T Manufacturing and mechanical properties of calcium phosphate biomaterials %J Comptes Rendus. Mécanique %D 2012 %P 715-720 %V 340 %N 10 %I Elsevier %R 10.1016/j.crme.2012.09.005 %G en %F CRMECA_2012__340_10_715_0
S. Laasri; M. Taha; E.K. Hlil; A. Laghzizil; A. Hajjaji. Manufacturing and mechanical properties of calcium phosphate biomaterials. Comptes Rendus. Mécanique, Volume 340 (2012) no. 10, pp. 715-720. doi : 10.1016/j.crme.2012.09.005. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2012.09.005/
[1] Histomorphometry of human sinus floor augmentation using a porous β-tricalcium phosphate: a prospective study, Clin. Oral Implants Res., Volume 15 (2004), pp. 724-732
[2] A continuum model for the bio-mechanical interactions between living tissue and bio-resorbable graft after bone reconstructive surgery, C. R. Mecanique, Volume 339 (2011), pp. 625-640
[3] Modélisation multi-échelle des propriétés mécaniques de lʼos : étude à lʼéchelle de la fibrille, C. R. Mecanique, Volume 337 (2007), pp. 436-442
[4] Calcium Phosphates in Oral Biology and Medicine, Monographs in Oral Science, vol. 15, Karger, Basel, 1991
[5] Bioresorbable Composite Bone Paste Using Polysaccharide Based Nanohydroxyapatite, Studies in Inorganic Chemistry, Elsevier, Amsterdam, 1994
[6] Synthetic porous ceramic compared with autograft in scoliosis surgery, J. Bone Joint Surg. Br. B, Volume 80 (1998), pp. 13-18
[7] A thorough physicochemical characterisation of 14 calcium phosphate-based bone substitution materials in comparison to natural bone, Biomaterials, Volume 25 (2004), pp. 987-994
[8] Mechanical biocompatibilities of titanium alloys for biomedical applications, J. Mech. Behav. Biomed. Mater., Volume 1 (2008), pp. 30-42
[9] The effect of porosity and mineral content on the Youngʼs modulus of elasticity of compact bone, J. Biomech., Volume 21 (1988), pp. 131-139
[10] Effect of porosity and physicochemical properties on the stability, resorption and strength of calcium phosphate ceramics, Ann. N.Y. Acad. Sci., Volume 523 (1988), pp. 227-233
[11] Sintering effects on mechanical properties of biologically derived dentine hydroxyapatite, Mater. Lett., Volume 56 (2002), pp. 142-147
[12] Synthetic pure-phase beta-tricalcium phosphate ceramic granules (Cerasorb) for bone regeneration in the reconstructive surgery of the jaws, Int. J. Oral Maxillofac. Surg., Volume 35 (2006), pp. 708-713
[13] A preliminary study on osteoinduction of two kinds of calcium phosphate ceramics, Biomaterials, Volume 20 (1999), pp. 1799-1806
[14] The affect of densification and dehydroxylation on the mechanical properties of stoichiometric hydroxyapatite bioceramics, Mater. Res. Bull., Volume 45 (2010), pp. 1433-1437
[15] Rapid densification of nanocrystalline hydroxyapatite for biomedical applications, Ceram. Int., Volume 33 (2007), pp. 1363-1367
[16] Indentation microstructure of ceramics—its application and problems, J. Ceram. Soc. Jpn., Volume 20 (1985), pp. 12-18
[17] C. Benaqqa, Etude de la propagation sous critique de fissures dans les phosphates de calcium : cas de lʼhydroxyapatite et du phosphate tricalcique, Thèse, INSA, Lyon, France, 2003.
[18] Investigation by infrared absorption spectroscopy into the chemical mechanisms of the wet process synthesis of some calcium phosphates, J. Phys. IV France, Volume 123 (2005), pp. 233-236
[19] Fourier transform infrared spectroscopy of the solution-mediated conversion of amorphous calcium phosphate to hydroxyapatite: new correlations between X-ray diffraction and infrared data, Calcif. Tissue Int., Volume 58 (1996), pp. 9-16
[20] Clarifying the effect of sintering conditions on the microstructure and mechanical properties of β-tricalcium phosphate, Ceram. Int., Volume 36 (2010), pp. 1929-1935
[21] Mesoporous hydroxyapatites elabored in ethanol–water media: structure and surface properties, Mater. Chem. Phys., Volume 104 (2007), pp. 448-453
Cited by Sources:
Comments - Policy