Comptes Rendus
Combustion, flow and spray dynamics for aerospace propulsion
Numerical simulation of primary and secondary atomization
Comptes Rendus. Mécanique, Volume 341 (2013) no. 1-2, pp. 15-25.

The physics of the atomization process involves many complex phenomena, which occur at different scales of space and time. The numerical study of such a problem is a great challenge for different reasons. Large density ratios, presence of a singular surface tension force, interface localization and transport, mass conservation, all of these make accurate numerical simulation difficult to perform. Several strategies have been investigated at ONERA in order to find an optimal method to simulate the atomization process with the CEDRE code. Both interface capturing and diffuse interface algorithms have been tested. The present development consists in the implementation of a multi-fluid version of the current gas solver of CEDRE, which conserves all its original features. One of the principal axes of research is based on a method which couples the new multi-fluid method with one of the dispersed phase solvers of CEDRE. The long term purpose is to be able to perform numerical simulation of both primary and secondary atomization.

Publié le :
DOI : 10.1016/j.crme.2012.10.003
Mots clés : Combustion, Primary and secondary atomization, Multi-phase flows, Direct numerical simulation, Sharp interface methods, Diffuse interface methods, Dispersed phase methods
Davide Zuzio 1 ; Jean-Luc Estivalezes 1 ; Philippe Villedieu 1 ; Ghislain Blanchard 1

1 ONERA (The French Aerospace Lab), 2, avenue Edouard-Belin, 31055 Toulouse cedex 4, France
@article{CRMECA_2013__341_1-2_15_0,
     author = {Davide Zuzio and Jean-Luc Estivalezes and Philippe Villedieu and Ghislain Blanchard},
     title = {Numerical simulation of primary and secondary atomization},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {15--25},
     publisher = {Elsevier},
     volume = {341},
     number = {1-2},
     year = {2013},
     doi = {10.1016/j.crme.2012.10.003},
     language = {en},
}
TY  - JOUR
AU  - Davide Zuzio
AU  - Jean-Luc Estivalezes
AU  - Philippe Villedieu
AU  - Ghislain Blanchard
TI  - Numerical simulation of primary and secondary atomization
JO  - Comptes Rendus. Mécanique
PY  - 2013
SP  - 15
EP  - 25
VL  - 341
IS  - 1-2
PB  - Elsevier
DO  - 10.1016/j.crme.2012.10.003
LA  - en
ID  - CRMECA_2013__341_1-2_15_0
ER  - 
%0 Journal Article
%A Davide Zuzio
%A Jean-Luc Estivalezes
%A Philippe Villedieu
%A Ghislain Blanchard
%T Numerical simulation of primary and secondary atomization
%J Comptes Rendus. Mécanique
%D 2013
%P 15-25
%V 341
%N 1-2
%I Elsevier
%R 10.1016/j.crme.2012.10.003
%G en
%F CRMECA_2013__341_1-2_15_0
Davide Zuzio; Jean-Luc Estivalezes; Philippe Villedieu; Ghislain Blanchard. Numerical simulation of primary and secondary atomization. Comptes Rendus. Mécanique, Volume 341 (2013) no. 1-2, pp. 15-25. doi : 10.1016/j.crme.2012.10.003. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2012.10.003/

[1] A. Aliseda; E.J. Hopfinger; J.C. Lasheras; D.M. Kremer; A. Berchielli; E.K. Connolly Atomization of viscous and non-Newtonian liquids by a coaxial, high-speed gas jet. Experiments and droplet size modeling, International Journal of Multiphase Flow, Volume 34 (2008), pp. 161-175

[2] D. Kim, O. Desjardins, M. Herrmann, P. Moin, Toward two-phase simulation of the primary breakup of a round liquid jet by a coaxial flow of gas, Technical report, Annual Research Briefs, Center for Turbulence Research, 2006.

[3] Vital Gutierrez Fernandez, Experimental study of a liquid sheet disintegration in a high pressure environment, PhD thesis, ISAE, 2009.

[4] R. Lebas; T. Menard; P.A. Beau; A. Berlemont; F.X. Demoulin Numerical simulation of primary break-up and atomization: DNS and modelling study, International Journal of Multiphase Flow, Volume 35 (2009), pp. 247-260

[5] O. Desjardins; V. Moureau; H. Pitsch An accurate conservative level set/ghost fluid method for simulating turbulent atomization, Journal of Computational Physics, Volume 227 (2008) no. 18, pp. 8395-8416

[6] Marcus Herrmann Detailed numerical simulations of the primary atomization of a turbulent liquid jet in crossflow, Journal of Engineering for Gas Turbines and Power, Volume 132 (2010) no. 6, pp. 451-466

[7] G. Tomar; D. Fuster; S. Zaleski; S. Popinet Multiscale simulations of primary atomization using Gerris, Computers and Fluids, Volume 39 (2010) no. 10, pp. 1864-1874

[8] D. Fuster; A. Bagué; T. Boeck; L. LeMoyne; A. Leboissetier; S. Popinet; P. Ray; R. Scardovelli; S. Zaleski Simulation of primary atomization with an octree adaptive mesh refinement and VOF method, International Journal of Multiphase Flow, Volume 35 (2009), pp. 550-565

[9] S. Apte; M. Gorokhovski; P. Moin LES of atomizing spray with stochastic modeling of secondary break-up, International Journal of Multiphase Flow, Volume 29 (2003), pp. 1503-1522

[10] M.A. Gorokhovski; V.L. Saveliev Analyses of Kolmogorovʼs model of breakup and its application into Lagrangian computation of liquid sprays under air-blast atomization, Physics of Fluids, Volume 15 (2003) no. 1, pp. 184-192 | DOI

[11] M. Herrmann A parallel Eulerian interface tracking/Lagrangian point particle multi-scale coupling procedure, Journal of Computational Physics, Volume 229 (2010), pp. 745-759

[12] X. Li, M. Arienti, M. Soteriou, M. Sussman, Towards an efficient, high-fidelity methodology for liquid jet atomization computations, in: 48th AIAA Aerospace Sciences Meeting, 2010, AIAA 2010-210.

[13] Frédéric Couderc, Développement dʼun code de calcul pour la simulation dʼécoulements de fluides non miscibles. Application à la désintégration assistée dʼun jet liquide par un courant gazeux, PhD thesis, ENSAE, 2007.

[14] N. Shied, J.-P. Vila, P. Villedieu, Programme compere – développement dʼun schéma bas Mach dans le code slosh, Technical Report RF 2/14018, ONERA/DMAE, Mars 2009.

[15] N. Grenier, P. Villedieu, J.-P. Vila, An accurate low-Mach scheme for a compressible two fluid model applied to sloshing phenomena, in: Proceedings of ASME–JSME–KSME Joint Fluids Engineering Conference, AJK2011-FED, Hamamatsu, Shizuoka, Japan, July 24–29, 2011.

[16] D. Zuzio, Direct numerical simulation of two phase flows with adaptive mesh refinement, PhD thesis, ISAE, 2010.

[17] G. Chanteperdrix, Modélisation et simulation numérique dʼécoulements diphasiques interface libre. Application lʼétude des mouvements de liquides dans les réservoirs de véhicules spatiaux, PhD thesis, ISAE, 2004.

[18] G. Blanchard, Couplage de modèles et de méthodes numériques pour la simulation de lʼatomisation dʼun jet liquide, Technical report, ONERA, 2011.

[19] D. Zuzio; J.-L. Estivalezes A parallel adaptive projection method for incompressible two phase flows, St Petersburg, Russia, July 12–16, 2010 (2010) (URL: http://download.springer.com/static/pdf/917/bfm%253A978-3-642-17884-9%252F1.pdf?auth66=1354399748_748c2d37a85547f1117baafafe89e65c&ext=.pdf)

[20] C.T. Crowe; M. Sommerfeld; Y. Tsuji Multiphase Flows with Drops and Particles, CRC Press, 1998

Cité par Sources :

Commentaires - Politique


Ces articles pourraient vous intéresser

Liquid sheet disintegration at high pressure: An experimental approach

V.G. Fernandez; P. Berthoumie; G. Lavergne

C. R. Méca (2009)


Combustion, spray and flow dynamics for aerospace propulsion

Franck Richecoeur; Sébastien Candel

C. R. Méca (2013)


Use of Faraday instabilities to enhance fuel pulverisation in air-blast atomisers

Madjid Boukra; Alain Cartellier; Éric Ducasse; ...

C. R. Méca (2009)