Staged multi-injection combustors seem good candidates to face flame stabilization problems (combustion instabilities, flashback, flame extinction), encountered in lean premixed prevaporized (LPP) burners. Staging procedures enable fuel distribution control while multipoint injection can lead to a fast and efficient mixing. In the present study, a laboratory-scale staged multipoint combustor is characterized using High Speed Particle Image Velocimetry and Planar Laser Induced Fluorescence measurements. It is shown that the fuel distribution strongly affects the flame stabilization processes, modifying the thermo-acoustic coupling. Furthermore, results reveal the presence of a precessing vortex core (PVC), that can lead to a better flame stabilization in particular cases.
Les injecteurs multipoints étagés semblent de bons candidats pour faire face aux problèmes de stabilité de flamme (instabilités de combustion, flashback, extinction de flamme) rencontrés dans les brûleurs à combustion prémélangée prévaporisée pauvre. Les procédures dʼétagement permettent de contrôler la distribution de carburant tandis que lʼinjection multipoint peut conduire à un mélange plus rapide et plus efficace. Dans cette étude un injecteur multipoint étagé à échelle de laboratoire est caractérisé à lʼaide de la Vélocimétrie par Image de Particules à haute cadence et la Fluorescence Induite par Laser. Les résultats montrent que les processus de stabilisation de flamme sont fortement influencés par la distribution de carburant, conduisant à des instabilités thermo-acoustiques plus ou moins élevées. Par ailleurs, les résultats révèlent la présence dʼune structure aerodynamique en précession, qui, sous certaines conditions, améliore la stabilisation de la flamme.
Mot clés : Combustion, Flamme swirlée, Étagement
Theodore Providakis 1, 2; Laurent Zimmer 1, 2; Philippe Scouflaire 1, 2; Sébastien Ducruix 1, 2
@article{CRMECA_2013__341_1-2_4_0, author = {Theodore Providakis and Laurent Zimmer and Philippe Scouflaire and S\'ebastien Ducruix}, title = {Characterization of the coherent structures in swirling flames stabilized in a two-staged multi-injection burner: {Influence} of the staging factor}, journal = {Comptes Rendus. M\'ecanique}, pages = {4--14}, publisher = {Elsevier}, volume = {341}, number = {1-2}, year = {2013}, doi = {10.1016/j.crme.2012.10.010}, language = {en}, }
TY - JOUR AU - Theodore Providakis AU - Laurent Zimmer AU - Philippe Scouflaire AU - Sébastien Ducruix TI - Characterization of the coherent structures in swirling flames stabilized in a two-staged multi-injection burner: Influence of the staging factor JO - Comptes Rendus. Mécanique PY - 2013 SP - 4 EP - 14 VL - 341 IS - 1-2 PB - Elsevier DO - 10.1016/j.crme.2012.10.010 LA - en ID - CRMECA_2013__341_1-2_4_0 ER -
%0 Journal Article %A Theodore Providakis %A Laurent Zimmer %A Philippe Scouflaire %A Sébastien Ducruix %T Characterization of the coherent structures in swirling flames stabilized in a two-staged multi-injection burner: Influence of the staging factor %J Comptes Rendus. Mécanique %D 2013 %P 4-14 %V 341 %N 1-2 %I Elsevier %R 10.1016/j.crme.2012.10.010 %G en %F CRMECA_2013__341_1-2_4_0
Theodore Providakis; Laurent Zimmer; Philippe Scouflaire; Sébastien Ducruix. Characterization of the coherent structures in swirling flames stabilized in a two-staged multi-injection burner: Influence of the staging factor. Comptes Rendus. Mécanique, Volume 341 (2013) no. 1-2, pp. 4-14. doi : 10.1016/j.crme.2012.10.010. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2012.10.010/
[1] Power generation and aeropropulsion gas turbines: from combustion science to combustion technology, Proceedings of the Combustion Institute, Volume 27 (1998), pp. 1793-1807
[2] R. Tacina, Low NOx potential of gas turbine engines, in: AIAA Aerospace Sciences Meeting and Exhibit, 1990.
[3] The role of fuel preparation in low-emission combustion, Journal of Engineering for Gas Turbines and Power, Volume 117 (1995), pp. 617-654
[4] NOx emission control in gas turbines for combined cycles cycle gas turbine plant, Journal of Power and Energy, Volume 211 (1997), pp. 43-52
[5] Combustion Instabilities in Gas Turbine Engines: Operational Experience, Fundamental Mechanisms, and Modeling, Progress in Astronautics and Aeronautics, vol. 210, American Institute of Aeronautics and Astronautics, 2006
[6] Combustion dynamics and control progress and challenges, Proceedings of the Combustion Institute, Volume 29 (2002), pp. 1-28
[7] Experimental analysis of flashback in lean premixed swirling flames: conditions close to flashback, Experiments in Fluids, Volume 43 (2007), pp. 89-100
[8] Gas Turbine Combustion, Taylor & Francis, 1999
[9] Combustion dynamics and instabilities: elementary coupling and driving mechanisms, Journal of Propulsion and Power, Volume 19 (2003), pp. 722-734
[10] Experimental demonstration of active control of combustion instabilities using real-time modes observation and secondary fuel injection, Proceedings of the Combustion Institute, Volume 26 (1996), pp. 2811-2818
[11] Effect of injection location on the effectiveness of an active control system using secondary fuel injection, Proceedings of the Combustion Institute, Volume 28 (2000), pp. 739-746
[12] Transfer function measurements in a model combustor: application to adaptive instability control, Combustion Science and Technology, Volume 175 (2003), pp. 993-1013
[13] Active control of combustion oscillations in a lean premixed combustor by secondary fuel injection coupling with chemiluminescence imaging technique, Proceedings of the Combustion Institute, Volume 31 (2007), pp. 3225-3233
[14] Control of combustion instabilities by local injection of hydrogen, Proceedings of the Combustion Institute, Volume 31 (2007), pp. 3207-3214
[15] Fluctuations of a spray generated by an airblast atomizer, Experiments in Fluids, Volume 46 (2009), pp. 1081-1091
[16] Time resolved flowfield, flame structure and acoustic characterization of a staged multi-injection burner, Proceedings of the Combustion Institute, Volume 32 (2009), pp. 2965-2972
[17] S. Barbosa, Etude expérimentale dʼun injecteur multipoint étagé, Ph.D. thesis, Ecole Centrale Paris, 2008.
[18] Mixing and stabilization study of a partially premixed swirling flame using laser induced fluorescence, Combustion and Flame, Volume 158 (2011), pp. 155-171
[19] Systematic measurements of OH chemiluminescence for fuel-lean, high-pressure, premixed laminar flame, Fuel, Volume 80 (2001), pp. 67-74
[20] On the adequacy of chemiluminescence as a measure for heat release in turbulent flames with mixture gradients, Journal of Engineering for Gas Turbines and Power, Volume 132 (2010), p. 061502
[21] Determination of the heat release distribution in turbulent flames by a model based correction of OH* chemiluminescence, Journal of Engineering for Gas Turbines and Power, Volume 133 (2011), p. 121501
[22] T. Providakis, P. Scouflaire, L. Zimmer, S. Ducruix, Time-resolved PIV measurements applied to a non-reactive dodecane–air mixture in a two-staged multi-injection burner, in: 15th International Symposium on Applications of Laser Techniques to Fluid Mechanics, 2010.
[23] T. Providakis, L. Zimmer, P. Scouflaire, S. Ducruix, Effect of fuel distribution on spray dynamics in a two-stage multi-injection burner, in: Proceedings of ASME Turbo Expo (GT2011-46519), Vancouver, Canada, 2011.
[24] Modelling of the atomization of a plain liquid fuel jet in crossflow at gas turbine conditions, Aerospace Science and Technology, Volume 6 (2002), pp. 495-506
[25] Temporally resolved planar measurements of transient phenomena in a partially pre-mixed swirl flame in a gas turbine model combustor, Combustion and Flame, Volume 157 (2010), pp. 1510-1525
[26] Flow–flame interactions causing acoustically coupled heat release fluctuations in a thermo-acoustically unstable gas turbine model combustor, Combustion and Flame, Volume 157 (2010), pp. 2250-2266
[27] Nonlinear interaction between a precessing vortex core and acoustic oscillations in a turbulent swirling flame, Combustion and Flame, Volume 159 (2012), pp. 2650-2668
[28] Large eddy simulation of the sensitivity of vortex breakdown and flame stabilisation to axial forcing, Flow, Turbulence and Combustion, Volume 86 (2011), pp. 639-666
Cited by Sources:
Comments - Policy