Comptes Rendus
Combustion, flow and spray dynamics for aerospace propulsion
Experimental investigation of explosive vaporization of C6F14
Comptes Rendus. Mécanique, Combustion, spray and flow dynamics for aerospace propulsion, Volume 341 (2013) no. 1-2, pp. 88-99.

Depressurization experiments were conducted with C6F14 for superheats between 5 °C and 90 °C in order to determine how the drop characteristics evolve with the thermodynamic disequilibrium. High-speed imaging indicates that flashing is predominant and leads to very dense sprays. Phase Doppler Interferometer (PDI) was adapted to these optically thick conditions and its ability to provide unbiased velocity and size distributions was carefully checked (even though the flux was underestimated). Experiments show that, for initial superheats above 40 °C, the mean drop velocity linearly increases with the initial superheat while the mean drop diameter remains nearly constant. Such behaviors, not reported in the literature, are tentatively related with a front boiling process in which the drop velocity is driven by the vapor velocity while the drop size is controlled by bubbles exploding at the front. In addition, phase detection optical probes used in combination with PDI data provided number density flux measurements. Global vaporization rates deduced from these local data happen to be fairly consistent with alternate techniques, and the vapor flux exhibits a somewhat weak increase with the superheat.

Published online:
DOI: 10.1016/j.crme.2012.10.008
Keywords: Flashing, Explosive vaporization, Sudden depressurization, Spray, Superheat, Drop size and velocity, Vaporization flux, PDI, Optical probe

Clélia Desnous 1; Alain Cartellier 1; Nicolas Meyers 2

1 LEGI-CNRS/Grenoble Université, BP 53, 38041 Grenoble, France
2 SNECMA Vernon, forêt de Vernon, BP 802, 27298 Vernon, France
@article{CRMECA_2013__341_1-2_88_0,
     author = {Cl\'elia Desnous and Alain Cartellier and Nicolas Meyers},
     title = {Experimental investigation of explosive vaporization of {C\protect\textsubscript{6}F\protect\textsubscript{14}}},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {88--99},
     publisher = {Elsevier},
     volume = {341},
     number = {1-2},
     year = {2013},
     doi = {10.1016/j.crme.2012.10.008},
     language = {en},
}
TY  - JOUR
AU  - Clélia Desnous
AU  - Alain Cartellier
AU  - Nicolas Meyers
TI  - Experimental investigation of explosive vaporization of C6F14
JO  - Comptes Rendus. Mécanique
PY  - 2013
SP  - 88
EP  - 99
VL  - 341
IS  - 1-2
PB  - Elsevier
DO  - 10.1016/j.crme.2012.10.008
LA  - en
ID  - CRMECA_2013__341_1-2_88_0
ER  - 
%0 Journal Article
%A Clélia Desnous
%A Alain Cartellier
%A Nicolas Meyers
%T Experimental investigation of explosive vaporization of C6F14
%J Comptes Rendus. Mécanique
%D 2013
%P 88-99
%V 341
%N 1-2
%I Elsevier
%R 10.1016/j.crme.2012.10.008
%G en
%F CRMECA_2013__341_1-2_88_0
Clélia Desnous; Alain Cartellier; Nicolas Meyers. Experimental investigation of explosive vaporization of C6F14. Comptes Rendus. Mécanique, Combustion, spray and flow dynamics for aerospace propulsion, Volume 341 (2013) no. 1-2, pp. 88-99. doi : 10.1016/j.crme.2012.10.008. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2012.10.008/

[1] R. Brown; J.L. York Sprays formed by flashing liquid jets, AIChE J., Volume 8 (1962), pp. 149-153

[2] E. Hervieu; T. Veneau Experimental determination of the droplet size and velocity distributions at the exit of the bottom discharge pipe of a liquefied propane storage tank during a sudden blowdown, J. Loss Prev. Process Ind., Volume 9 (1996), pp. 413-425

[3] D. Yildiz, P. Rambaud, J. Van Beeck, J.M. Buchlin, Evolution of the spray characteristics in superheated liquid atomization in function of initial flow conditions, in: ICLASS, Kyoto, Japan, August 27–September 1, 2006.

[4] R. Lecourt; P. Barricau; J. Steelant Spray velocity and drop size measurements in flashing conditions, At. Sprays, Volume 19 (2009), pp. 103-133

[5] A. Naqwi; R. Menon A rigorous procedure for design and response determination of phase Doppler systems, Lisbon, Portugal, 11–14 July (1994)

[6] P. Reinke; G. Yadigaroglu Explosive vaporization of superheated liquids by boiling fronts, Int. J. Multiphase Flow, Volume 27 (2001), pp. 1487-1516

[7] L. Duchemin; S. Popinet; C. Josserand; S. Zaleski Jet formation in gas bubbles bursting at a free surface, Phys. Fluids, Volume 14 (2002), pp. 3000-3008

[8] M. Hong; A. Cartellier; E.J. Hopfinger Characterization of phase detection optical probes for the measurement of the dispersed phase parameters in sprays, Int. J. Multiphase Flow, Volume 30 (2004), pp. 615-648

Cited by Sources:

Comments - Policy