Comptes Rendus
Combustion, flow and spray dynamics for aerospace propulsion
Heat transfer of droplets impinging onto a wall above the Leidenfrost temperature
Comptes Rendus. Mécanique, Volume 341 (2013) no. 1-2, pp. 75-87.

In aero-engines, droplet/wall interaction phenomena have a considerable influence on the mixture formation process and on wall heat fluxes. Impinging droplets may rebound, splash into secondary droplets or form a liquid film onto the solid surface. Droplet rebound and splashing is also a mechanism for the back penetration of the fuel vapor in the central region of the combustion chamber where the gas temperature is high enough for ignition. This work is an experimental study aiming at characterizing the heat transfers induced by the impingement of water droplets (diameter 80–180 μm) on a thin nickel plate heated by electromagnetic induction. The temperature of the rear face of the nickel sample is measured by means of an infrared camera and the heat removed from the wall due to the presence of the droplets is estimated using a semi-analytical inverse heat conduction model. In parallel, the temperature of the droplets is measured using the two-color Laser-Induced Fluorescence Thermometry which has been extended to imagery for the purpose of these experiments. The measurements of the variation in the droplet temperature occurring during an impact allow determining the liquid sensible heat. Measurements are performed at surface conditions well above the Leidenfrost temperature. A wide range of Weber numbers corresponding to the bouncing and splashing regimes are tested. Comparison between the heat flux removed from the wall and the sensible heat gained by the liquid allows estimating the heat flux related to liquid evaporation. Results reveal that the respective level of the droplet sensible heat and the heat lost due to liquid vaporization can vary significantly with the droplet sizes and the Weber number.

Les phénomènes dʼinteractions gouttes/paroi jouent un rôle important dans les chambres de combustion des turboréacteurs. Ils participent notamment à la production et au mélange de la vapeur de combustible ainsi quʼaux transferts de chaleur en paroi. Différents régimes dʼimpact peuvent être observés selon les conditions : le rebond, lʼéclatement avec la formation de gouttes secondaires ainsi que le dépôt dʼun film liquide. La vapeur générée lors de ces interactions migre ensuite vers lʼintérieur de la chambre de combustion, où la température des gaz est suffisamment élevée pour permettre lʼinflammation. Cette étude expérimentale a pour objectif de caractériser les transferts thermiques lors de lʼimpact de gouttelettes dʼeau sur une pastille de Nickel chauffée par induction électromagnétique. La température face-arrière de lʼéchantillon de nickel est mesurée à lʼaide dʼune caméra infrarouge, et le flux extrait à la paroi est estimé par un modèle dʼinversion semi-analytique tenant compte de la conduction dans la pastille ainsi que des pertes convective et radiative. En parallèle, lʼéchauffement des gouttes est caractérisé à lʼaide de la fluorescence induite par laser à deux couleurs. Cette technique a été récemment étendue à de lʼimagerie dans le cadre de cette étude. Elle permet dʼestimer la chaleur sensible gagnée par les gouttes lors de lʼimpact. La paroi est maintenue à une température supérieure à la température de Leidenfrost, tandis que le nombre de Weber des gouttes incidentes est modifié de manière à obtenir des rebonds et des éclatements. La comparaison entre la chaleur sensible gagnée par les gouttes et le flux extrait à la paroi permet finalement dʼévaluer le flux de chaleur prélevée par évaporation. Les contributions au refroidissement de ces flux varient de manière significative en fonction du diamètre des gouttes, mais aussi du nombre de Weber des gouttes incidentes.

Published online:
DOI: 10.1016/j.crme.2012.11.006
Keywords: Droplet impact, Hot wall, Leidenfrost, Laser-induced fluorescence, Heat transfer
Mot clés : Impact de gouttes, Paroi chaude, Leidenfrost, Fluorescence induite par Laser, Transferts thermiques

Pierre Dunand 1, 2; Guillaume Castanet 1, 2; Michel Gradeck 1, 2; Fabrice Lemoine 1, 2; Denis Maillet 1, 2

1 Université de Lorraine, LEMTA, UMR 7563, 54500 Vandoeuvre-lès-Nancy, France
2 CNRS, LEMTA, UMR 7563, 54500 Vandoeuvre-lès-Nancy, France
@article{CRMECA_2013__341_1-2_75_0,
     author = {Pierre Dunand and Guillaume Castanet and Michel Gradeck and Fabrice Lemoine and Denis Maillet},
     title = {Heat transfer of droplets impinging onto a wall above the {Leidenfrost} temperature},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {75--87},
     publisher = {Elsevier},
     volume = {341},
     number = {1-2},
     year = {2013},
     doi = {10.1016/j.crme.2012.11.006},
     language = {en},
}
TY  - JOUR
AU  - Pierre Dunand
AU  - Guillaume Castanet
AU  - Michel Gradeck
AU  - Fabrice Lemoine
AU  - Denis Maillet
TI  - Heat transfer of droplets impinging onto a wall above the Leidenfrost temperature
JO  - Comptes Rendus. Mécanique
PY  - 2013
SP  - 75
EP  - 87
VL  - 341
IS  - 1-2
PB  - Elsevier
DO  - 10.1016/j.crme.2012.11.006
LA  - en
ID  - CRMECA_2013__341_1-2_75_0
ER  - 
%0 Journal Article
%A Pierre Dunand
%A Guillaume Castanet
%A Michel Gradeck
%A Fabrice Lemoine
%A Denis Maillet
%T Heat transfer of droplets impinging onto a wall above the Leidenfrost temperature
%J Comptes Rendus. Mécanique
%D 2013
%P 75-87
%V 341
%N 1-2
%I Elsevier
%R 10.1016/j.crme.2012.11.006
%G en
%F CRMECA_2013__341_1-2_75_0
Pierre Dunand; Guillaume Castanet; Michel Gradeck; Fabrice Lemoine; Denis Maillet. Heat transfer of droplets impinging onto a wall above the Leidenfrost temperature. Comptes Rendus. Mécanique, Volume 341 (2013) no. 1-2, pp. 75-87. doi : 10.1016/j.crme.2012.11.006. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2012.11.006/

[1] M. Rein Interactions between drops and hot surfaces (M. Rein, ed.), Drop-Surface Interactions, Springer, Wien, New York, 2002

[2] R. Rioboo; C. Tropea; M. Marengo Outcomes from a drop impact on solid surfaces, Atomization and Sprays, Volume 11 (2001) no. 2, pp. 155-165

[3] S.C. Yao; K.Y. Cai The dynamics and Leidenfrost temperature of drops impacting on a hot surface a small angles, Experimental Thermal and Fluid Science, Volume 1 (1988), pp. 363-371

[4] S. Sikalo; M. Marengo; C. Tropea; E.N. Ganic Analysis of impact of droplets on horizontal surfaces, Experimental Thermal and Fluid Science, Volume 25 (2002), pp. 503-510

[5] G.E. Cossali, M. Marengo, M. Santini, S. Fest, Effect of wall effusivity on thermally induced secondary atomisation of single drop impacting onto a tilted surface, in: 10th International Conference on Liquid Atomization and Spray System, Kyoto, Japan, 2006.

[6] N. García Rosa, P. Villedieu, J. Dewitte, G. Lavergne, A new droplet-wall interaction model, in: 10th International Conference on Liquid Atomization and Spray System, Tokyo, Japan, 2006.

[7] J.D. Bernardin; I. Mudawar Film boiling heat transfer of droplet streams and sprays, International Journal of Heat and Mass Transfer, Volume 40 (1997) no. 2, pp. 2579-2593

[8] K.J. Baumeister; J.J. Simon Leidenfrost temperature – its correlation for liquid metals, cryogens, hydrocarbons and water, Transactions of the ASME: Journal of Heat Transfer, Volume 95 (1973), pp. 166-173

[9] P. Le Clercq, Contribution à lʼétude expérimentale et théorique des interactions gouttes/paroi, PhD thesis of Ecole Nationale de lʼAéronautique et de lʼEspace, 2000.

[10] N.G. Rosa, P. Villedieu, J. Dewitte, G. Lavergne, A new droplet-wall interaction model, in: 10th International Conference on Liquid Atomization and Spray Systems (ICLASS-2006), Kyoto, 2006.

[11] L.H.J. Wachters; N.A.J. Westerling The heat transfer from a hot wall to impinging water drops in the spheroidal state, Chemical Engineering Science, Volume 21 (1966) no. 11, pp. 1047-1056

[12] D.B. Reid An algorithm for tracking multiple targets, IEEE Transactions on Automatic Control, Volume AC-24 (1979), pp. 843-854

[13] S. Boulesteix, Cisaillement dʼune interface gaz–liquide en conduite et entraînement de gouttelettes, 2010.

[14] G. Castanet; P. Lavieille; M. Lebouche; F. Lemoine Measurement of the temperature distribution within monodisperse combusting droplets in linear streams using two-color laser-induced fluorescence, Experiments in Fluids, Volume 35 (2003) no. 6, pp. 563-571

[15] V. Deprédurand; G. Castanet; F. Lemoine Heat and mass transfer in evaporating droplets in interaction: influence of the fuel, International Journal of Heat and Mass Transfer, Volume 53 (2010) no. 17–18, pp. 3495-3502

[16] G. Castanet; T. Liénart; F. Lemoine Dynamics and temperature of droplets impacting onto a heated wall, International Journal of Heat and Mass Transfer, Volume 52 (2009) no. 3–4, pp. 670-679

[17] P. Dunand, G. Castanet, F. Lemoine, A two-color planar LIF technique to visualize the temperature of droplets impinging onto a heated wall, in: 15th International Symposium on Applications of Laser Techniques to Fluid Mechanics, Lisbon, Portugal, 2010, pp. 05–08.

[18] P. Lavieille; A. Delconte; D. Blondel; M. Lebouché; F. Lemoine Non-intrusive temperature measurements using three-color laser-induced fluorescence, Experiments in Fluids, Volume 36 (2004) no. 5, pp. 706-716

[19] A. Labergue; A. Delconte; G. Castanet; F. Lemoine Study of the droplet size effect coupled with the laser light scattering in sprays for two-color LIF thermometry measurements, Experiments in Fluids, Volume 52 (2012) no. 5, pp. 1121-1132

[20] D. Maillet; S. André; J.C. Batsale; A. Degiovanni; C. Moyne Thermal Quadrupoles: Solving the Heat Equation Through Integral Transforms, John Wiley & Sons, 2000

[21] M. Gradeck, F. Lelong, N. Seiler, D. Maillet, How to estimate the heat transfer due to droplets impinging onto a hot slab?, in: ExHFT-7, Krakow, Poland, 2009.

[22] D. Maillet, M. Gradeck, B. Rémy, A. Ouattara, F. Lelong, Inverse conduction technique in Hankel domain using infrared thermography: application to water jet or droplet stream quenching a metal disk, in: 14th International Heat Transfer Conference, Washington, DC, 2010.

Cited by Sources:

Comments - Policy