Comptes Rendus
Combustion, flow and spray dynamics for aerospace propulsion
Computing combustion noise by combining large eddy simulations with analytical models for the propagation of waves through turbine blades
Comptes Rendus. Mécanique, Volume 341 (2013) no. 1-2, pp. 131-140.

Two mechanisms control combustion noise generation as shown by Marble and Candel (1977) [1]: direct noise, in which acoustic waves propagate through the turbine stages and indirect noise, in which vorticity and/or entropy waves generate noise as they are convected through turbine stages. A method to calculate combustion-generated noise has been implemented in a tool called CHORUS. The method uses the large eddy simulations of the combustion chamber obtained with the unstructured solver AVBP developed at CERFACS (Schønfeld and Rudgyard, 1999 [2]) and analytical models for the propagation through turbine stages. The propagation models (Cumpsty and Marble, 1977 [3]) use the compact row hypothesis to write matching conditions between the inlet and the outlet of a turbine stage. Using numerical simulations, the validity of the analytical methods is studied and the errors made quantified.

Deux mécanismes sont responsables de la génération de bruit de combustion : le bruit direct, dans lequel les ondes acoustiques se propagent à travers les étages de la turbine et le bruit indirect, dans lequel les ondes de vorticité ou entropiques génèrent du bruit quand elles sont convectées. Une méthode pour calculer le bruit de combustion a été mise en place dans lʼoutil CHORUS. La méthode utilise des simulations aux grandes échelles (LES) pour la chambre de combustion, avec le code AVBP developpé au CERFACS (Schønfeld et Rudgyard, 1999 [2]), et des méthodes analytiques pour la propagation des ondes à travers les étages de la turbine. Le modèle est validé avec des simulations numériques.

Published online:
DOI: 10.1016/j.crme.2012.10.012
Keywords: Combustion, Thermoacoustics, Indirect combustion noise, Large eddy simulation
Mot clés : Combustion, Thermoacoustique, Bruit de combustion indirect, Simulation aux grandes échelles

Ignacio Duran 1, 2; Matthieu Leyko 1; Stéphane Moreau 3; Franck Nicoud 4; Thierry Poinsot 5

1 Snecma, 77550 Moissy-Cramayel, France
2 CERFACS, 31057 Toulouse, France
3 Université de Sherbrooke, Sherbrooke, QC J1K2R1, Canada
4 Université Montpellier II, 34095 Montpellier, France
5 CNRS, institut de mécanique des fluides, 31400 Toulouse, France
@article{CRMECA_2013__341_1-2_131_0,
     author = {Ignacio Duran and Matthieu Leyko and St\'ephane Moreau and Franck Nicoud and Thierry Poinsot},
     title = {Computing combustion noise by combining large eddy simulations with analytical models for the propagation of waves through turbine blades},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {131--140},
     publisher = {Elsevier},
     volume = {341},
     number = {1-2},
     year = {2013},
     doi = {10.1016/j.crme.2012.10.012},
     language = {en},
}
TY  - JOUR
AU  - Ignacio Duran
AU  - Matthieu Leyko
AU  - Stéphane Moreau
AU  - Franck Nicoud
AU  - Thierry Poinsot
TI  - Computing combustion noise by combining large eddy simulations with analytical models for the propagation of waves through turbine blades
JO  - Comptes Rendus. Mécanique
PY  - 2013
SP  - 131
EP  - 140
VL  - 341
IS  - 1-2
PB  - Elsevier
DO  - 10.1016/j.crme.2012.10.012
LA  - en
ID  - CRMECA_2013__341_1-2_131_0
ER  - 
%0 Journal Article
%A Ignacio Duran
%A Matthieu Leyko
%A Stéphane Moreau
%A Franck Nicoud
%A Thierry Poinsot
%T Computing combustion noise by combining large eddy simulations with analytical models for the propagation of waves through turbine blades
%J Comptes Rendus. Mécanique
%D 2013
%P 131-140
%V 341
%N 1-2
%I Elsevier
%R 10.1016/j.crme.2012.10.012
%G en
%F CRMECA_2013__341_1-2_131_0
Ignacio Duran; Matthieu Leyko; Stéphane Moreau; Franck Nicoud; Thierry Poinsot. Computing combustion noise by combining large eddy simulations with analytical models for the propagation of waves through turbine blades. Comptes Rendus. Mécanique, Volume 341 (2013) no. 1-2, pp. 131-140. doi : 10.1016/j.crme.2012.10.012. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2012.10.012/

[1] F.E. Marble; S. Candel Acoustic disturbances from gas nonuniformities convected through a nozzle, J. Sound Vib., Volume 55 (1977), pp. 225-243

[2] T. Schønfeld; M. Rudgyard Steady and unsteady flows simulations using the hybrid flow solver AVBP, AIAA J., Volume 37 (1999) no. 11, pp. 1378-1385

[3] N.A. Cumpsty; F.E. Marble The interaction of entropy fluctuations with turbine blade rows; a mechanism of turbojet engine noise, Proc. R. Soc. Lond. A, Volume 357 (1977), pp. 323-344

[4] F. Bake; C. Richter; B. Muhlbauer; N. Kings; I. Rohle; F. Thiele; B. Noll The entropy wave generator (EWG): a reference case on entropy noise, J. Sound Vib. (2009), pp. 574-598

[5] M. Leyko; F. Nicoud; T. Poinsot Comparison of direct and indirect combustion noise mechanisms in a model combustor, AIAA J., Volume 47 (2009) no. 11, pp. 2709-2716

[6] M. Leyko; S. Moreau; F. Nicoud; T. Poinsot Numerical and analytical modelling of entropy noise in a supersonic nozzle with a shock, J. Sound Vib., Volume 330 (2011) no. 16, pp. 3944-3958 | DOI

[7] M. Leyko, S. Moreau, F. Nicoud, T. Poinsot, Waves transmission and generation in turbine stages in a combustion-noise framework, in: 16th AIAA/CEAS AeroAcoustics Conference, 2010.

[8] M. Leyko, Mise en oeuvre et analyse de calculs aéroacoustiques de type SGE pour la prévision du bruit de chambres de combustion aéronautiques, PhD thesis, INP Toulouse, 2010.

[9] D.G. Childers Modern Spectrum Analysis, IEEE Press, 1978

[10] T. Poinsot; S. Lele Boundary conditions for direct simulations of compressible viscous flows, J. Comput. Phys., Volume 101 (1992) no. 1, pp. 104-129

Cited by Sources:

Comments - Policy