Two mechanisms control combustion noise generation as shown by Marble and Candel (1977) [1]: direct noise, in which acoustic waves propagate through the turbine stages and indirect noise, in which vorticity and/or entropy waves generate noise as they are convected through turbine stages. A method to calculate combustion-generated noise has been implemented in a tool called CHORUS. The method uses the large eddy simulations of the combustion chamber obtained with the unstructured solver AVBP developed at CERFACS (Schønfeld and Rudgyard, 1999 [2]) and analytical models for the propagation through turbine stages. The propagation models (Cumpsty and Marble, 1977 [3]) use the compact row hypothesis to write matching conditions between the inlet and the outlet of a turbine stage. Using numerical simulations, the validity of the analytical methods is studied and the errors made quantified.
Deux mécanismes sont responsables de la génération de bruit de combustion : le bruit direct, dans lequel les ondes acoustiques se propagent à travers les étages de la turbine et le bruit indirect, dans lequel les ondes de vorticité ou entropiques génèrent du bruit quand elles sont convectées. Une méthode pour calculer le bruit de combustion a été mise en place dans lʼoutil CHORUS. La méthode utilise des simulations aux grandes échelles (LES) pour la chambre de combustion, avec le code AVBP developpé au CERFACS (Schønfeld et Rudgyard, 1999 [2]), et des méthodes analytiques pour la propagation des ondes à travers les étages de la turbine. Le modèle est validé avec des simulations numériques.
Mot clés : Combustion, Thermoacoustique, Bruit de combustion indirect, Simulation aux grandes échelles
Ignacio Duran 1, 2; Matthieu Leyko 1; Stéphane Moreau 3; Franck Nicoud 4; Thierry Poinsot 5
@article{CRMECA_2013__341_1-2_131_0, author = {Ignacio Duran and Matthieu Leyko and St\'ephane Moreau and Franck Nicoud and Thierry Poinsot}, title = {Computing combustion noise by combining large eddy simulations with analytical models for the propagation of waves through turbine blades}, journal = {Comptes Rendus. M\'ecanique}, pages = {131--140}, publisher = {Elsevier}, volume = {341}, number = {1-2}, year = {2013}, doi = {10.1016/j.crme.2012.10.012}, language = {en}, }
TY - JOUR AU - Ignacio Duran AU - Matthieu Leyko AU - Stéphane Moreau AU - Franck Nicoud AU - Thierry Poinsot TI - Computing combustion noise by combining large eddy simulations with analytical models for the propagation of waves through turbine blades JO - Comptes Rendus. Mécanique PY - 2013 SP - 131 EP - 140 VL - 341 IS - 1-2 PB - Elsevier DO - 10.1016/j.crme.2012.10.012 LA - en ID - CRMECA_2013__341_1-2_131_0 ER -
%0 Journal Article %A Ignacio Duran %A Matthieu Leyko %A Stéphane Moreau %A Franck Nicoud %A Thierry Poinsot %T Computing combustion noise by combining large eddy simulations with analytical models for the propagation of waves through turbine blades %J Comptes Rendus. Mécanique %D 2013 %P 131-140 %V 341 %N 1-2 %I Elsevier %R 10.1016/j.crme.2012.10.012 %G en %F CRMECA_2013__341_1-2_131_0
Ignacio Duran; Matthieu Leyko; Stéphane Moreau; Franck Nicoud; Thierry Poinsot. Computing combustion noise by combining large eddy simulations with analytical models for the propagation of waves through turbine blades. Comptes Rendus. Mécanique, Volume 341 (2013) no. 1-2, pp. 131-140. doi : 10.1016/j.crme.2012.10.012. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2012.10.012/
[1] Acoustic disturbances from gas nonuniformities convected through a nozzle, J. Sound Vib., Volume 55 (1977), pp. 225-243
[2] Steady and unsteady flows simulations using the hybrid flow solver AVBP, AIAA J., Volume 37 (1999) no. 11, pp. 1378-1385
[3] The interaction of entropy fluctuations with turbine blade rows; a mechanism of turbojet engine noise, Proc. R. Soc. Lond. A, Volume 357 (1977), pp. 323-344
[4] The entropy wave generator (EWG): a reference case on entropy noise, J. Sound Vib. (2009), pp. 574-598
[5] Comparison of direct and indirect combustion noise mechanisms in a model combustor, AIAA J., Volume 47 (2009) no. 11, pp. 2709-2716
[6] Numerical and analytical modelling of entropy noise in a supersonic nozzle with a shock, J. Sound Vib., Volume 330 (2011) no. 16, pp. 3944-3958 | DOI
[7] M. Leyko, S. Moreau, F. Nicoud, T. Poinsot, Waves transmission and generation in turbine stages in a combustion-noise framework, in: 16th AIAA/CEAS AeroAcoustics Conference, 2010.
[8] M. Leyko, Mise en oeuvre et analyse de calculs aéroacoustiques de type SGE pour la prévision du bruit de chambres de combustion aéronautiques, PhD thesis, INP Toulouse, 2010.
[9] Modern Spectrum Analysis, IEEE Press, 1978
[10] Boundary conditions for direct simulations of compressible viscous flows, J. Comput. Phys., Volume 101 (1992) no. 1, pp. 104-129
Cited by Sources:
Comments - Politique