[Méthode de calcul du bruit de combustion combinant des simulations aux grandes échelles avec des méthodes analytiques pour la propagation des ondes à travers les étages de turbine]
Deux mécanismes sont responsables de la génération de bruit de combustion : le bruit direct, dans lequel les ondes acoustiques se propagent à travers les étages de la turbine et le bruit indirect, dans lequel les ondes de vorticité ou entropiques génèrent du bruit quand elles sont convectées. Une méthode pour calculer le bruit de combustion a été mise en place dans lʼoutil CHORUS. La méthode utilise des simulations aux grandes échelles (LES) pour la chambre de combustion, avec le code AVBP developpé au CERFACS (Schønfeld et Rudgyard, 1999 [2]), et des méthodes analytiques pour la propagation des ondes à travers les étages de la turbine. Le modèle est validé avec des simulations numériques.
Two mechanisms control combustion noise generation as shown by Marble and Candel (1977) [1]: direct noise, in which acoustic waves propagate through the turbine stages and indirect noise, in which vorticity and/or entropy waves generate noise as they are convected through turbine stages. A method to calculate combustion-generated noise has been implemented in a tool called CHORUS. The method uses the large eddy simulations of the combustion chamber obtained with the unstructured solver AVBP developed at CERFACS (Schønfeld and Rudgyard, 1999 [2]) and analytical models for the propagation through turbine stages. The propagation models (Cumpsty and Marble, 1977 [3]) use the compact row hypothesis to write matching conditions between the inlet and the outlet of a turbine stage. Using numerical simulations, the validity of the analytical methods is studied and the errors made quantified.
Mots-clés : Combustion, Thermoacoustique, Bruit de combustion indirect, Simulation aux grandes échelles
Ignacio Duran 1, 2 ; Matthieu Leyko 1 ; Stéphane Moreau 3 ; Franck Nicoud 4 ; Thierry Poinsot 5
@article{CRMECA_2013__341_1-2_131_0, author = {Ignacio Duran and Matthieu Leyko and St\'ephane Moreau and Franck Nicoud and Thierry Poinsot}, title = {Computing combustion noise by combining large eddy simulations with analytical models for the propagation of waves through turbine blades}, journal = {Comptes Rendus. M\'ecanique}, pages = {131--140}, publisher = {Elsevier}, volume = {341}, number = {1-2}, year = {2013}, doi = {10.1016/j.crme.2012.10.012}, language = {en}, }
TY - JOUR AU - Ignacio Duran AU - Matthieu Leyko AU - Stéphane Moreau AU - Franck Nicoud AU - Thierry Poinsot TI - Computing combustion noise by combining large eddy simulations with analytical models for the propagation of waves through turbine blades JO - Comptes Rendus. Mécanique PY - 2013 SP - 131 EP - 140 VL - 341 IS - 1-2 PB - Elsevier DO - 10.1016/j.crme.2012.10.012 LA - en ID - CRMECA_2013__341_1-2_131_0 ER -
%0 Journal Article %A Ignacio Duran %A Matthieu Leyko %A Stéphane Moreau %A Franck Nicoud %A Thierry Poinsot %T Computing combustion noise by combining large eddy simulations with analytical models for the propagation of waves through turbine blades %J Comptes Rendus. Mécanique %D 2013 %P 131-140 %V 341 %N 1-2 %I Elsevier %R 10.1016/j.crme.2012.10.012 %G en %F CRMECA_2013__341_1-2_131_0
Ignacio Duran; Matthieu Leyko; Stéphane Moreau; Franck Nicoud; Thierry Poinsot. Computing combustion noise by combining large eddy simulations with analytical models for the propagation of waves through turbine blades. Comptes Rendus. Mécanique, Combustion, spray and flow dynamics for aerospace propulsion, Volume 341 (2013) no. 1-2, pp. 131-140. doi : 10.1016/j.crme.2012.10.012. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2012.10.012/
[1] Acoustic disturbances from gas nonuniformities convected through a nozzle, J. Sound Vib., Volume 55 (1977), pp. 225-243
[2] Steady and unsteady flows simulations using the hybrid flow solver AVBP, AIAA J., Volume 37 (1999) no. 11, pp. 1378-1385
[3] The interaction of entropy fluctuations with turbine blade rows; a mechanism of turbojet engine noise, Proc. R. Soc. Lond. A, Volume 357 (1977), pp. 323-344
[4] The entropy wave generator (EWG): a reference case on entropy noise, J. Sound Vib. (2009), pp. 574-598
[5] Comparison of direct and indirect combustion noise mechanisms in a model combustor, AIAA J., Volume 47 (2009) no. 11, pp. 2709-2716
[6] Numerical and analytical modelling of entropy noise in a supersonic nozzle with a shock, J. Sound Vib., Volume 330 (2011) no. 16, pp. 3944-3958 | DOI
[7] M. Leyko, S. Moreau, F. Nicoud, T. Poinsot, Waves transmission and generation in turbine stages in a combustion-noise framework, in: 16th AIAA/CEAS AeroAcoustics Conference, 2010.
[8] M. Leyko, Mise en oeuvre et analyse de calculs aéroacoustiques de type SGE pour la prévision du bruit de chambres de combustion aéronautiques, PhD thesis, INP Toulouse, 2010.
[9] Modern Spectrum Analysis, IEEE Press, 1978
[10] Boundary conditions for direct simulations of compressible viscous flows, J. Comput. Phys., Volume 101 (1992) no. 1, pp. 104-129
- State prediction of an entropy wave advecting through a turbulent channel flow, Journal of Fluid Mechanics, Volume 882 (2020) | DOI:10.1017/jfm.2019.799
- Research on airplanes engines dynamic processes with modern acoustic methods for fast and accurate diagnostics and safety improvement, Measurement, Volume 154 (2020), p. 107460 | DOI:10.1016/j.measurement.2019.107460
- Numerical Prediction of Far-Field Combustion Noise from Aeronautical Engines, Acoustics, Volume 1 (2019) no. 1, p. 174 | DOI:10.3390/acoustics1010012
- On the response of a lean-premixed hydrogen combustor to acoustic and dissipative-dispersive entropy waves, Energy, Volume 180 (2019), p. 272 | DOI:10.1016/j.energy.2019.04.202
- , 2018 AIAA/CEAS Aeroacoustics Conference (2018) | DOI:10.2514/6.2018-3282
- Accounting for Acoustic Damping in a Helmholtz Solver, AIAA Journal, Volume 55 (2017) no. 4, p. 1205 | DOI:10.2514/1.j055248
- , 21st AIAA/CEAS Aeroacoustics Conference (2015) | DOI:10.2514/6.2015-2821
- Combustion noise, Proceedings of the Combustion Institute, Volume 35 (2015) no. 1, p. 65 | DOI:10.1016/j.proci.2014.08.016
- Simulation and modelling of the waves transmission and generation in a stator blade row in a combustion-noise framework, Journal of Sound and Vibration, Volume 333 (2014) no. 23, p. 6090 | DOI:10.1016/j.jsv.2014.06.034
- A nonlinear model for indirect combustion noise through a compact nozzle, Journal of Fluid Mechanics, Volume 733 (2013), p. 268 | DOI:10.1017/jfm.2013.442
Cité par 10 documents. Sources : Crossref
Commentaires - Politique
Vous devez vous connecter pour continuer.
S'authentifier