[Simulation numérique instationnaire dʼune flamme plane de perchlorate dʼammonium avec prise en compte dʼune chimie détaillée en phase gazeuse et des interactions fluide–structure]
Un modèle monodimensionnel de combustion instationnaire du perchlorate dʼammonium prenant en compte une chimie détaillée en phase gazeuse avec 36 espèces et 216 réactions, les interactions fluide–structure à lʼinterface et permettant la propagation dʼondes acoustiques et élastiques est présenté. Nous étudions la propagation dʼune onde allant du gaz vers le solide et réfléchie par lʼinterface. La réponse temporelle de lʼinterface révèle un comportement linéaire pour le cas-test considéré dans ce travail.
A one-dimensional unsteady combustion model is presented for ammonium perchlorate flames taking into account a detailed gas phase chemistry with 36 species and 216 reactions, a fully-coupled fluid–structure interaction and allowing for acoustic and elastic waves propagation. The model is used to calculate a wave propagating from the gas phase into the solid phase and reflected by the interface. The interface temporal response shows a linear behavior for the test case of interest in this article.
Mot clés : Flamme, Propergol, Acoustique, Perchlorate dʼammonium, Chimie complexe
Vincent Giovangigli 1 ; Shihab Rahman 2
@article{CRMECA_2013__341_1-2_152_0, author = {Vincent Giovangigli and Shihab Rahman}, title = {Numerical simulation of unsteady planar ammonium perchlorate flames including detailed gas phase chemistry and fluid{\textendash}structure interaction}, journal = {Comptes Rendus. M\'ecanique}, pages = {152--160}, publisher = {Elsevier}, volume = {341}, number = {1-2}, year = {2013}, doi = {10.1016/j.crme.2012.10.017}, language = {en}, }
TY - JOUR AU - Vincent Giovangigli AU - Shihab Rahman TI - Numerical simulation of unsteady planar ammonium perchlorate flames including detailed gas phase chemistry and fluid–structure interaction JO - Comptes Rendus. Mécanique PY - 2013 SP - 152 EP - 160 VL - 341 IS - 1-2 PB - Elsevier DO - 10.1016/j.crme.2012.10.017 LA - en ID - CRMECA_2013__341_1-2_152_0 ER -
%0 Journal Article %A Vincent Giovangigli %A Shihab Rahman %T Numerical simulation of unsteady planar ammonium perchlorate flames including detailed gas phase chemistry and fluid–structure interaction %J Comptes Rendus. Mécanique %D 2013 %P 152-160 %V 341 %N 1-2 %I Elsevier %R 10.1016/j.crme.2012.10.017 %G en %F CRMECA_2013__341_1-2_152_0
Vincent Giovangigli; Shihab Rahman. Numerical simulation of unsteady planar ammonium perchlorate flames including detailed gas phase chemistry and fluid–structure interaction. Comptes Rendus. Mécanique, Volume 341 (2013) no. 1-2, pp. 152-160. doi : 10.1016/j.crme.2012.10.017. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2012.10.017/
[1] Unsteady Motions in Combustion Chambers for Propulsion Systems, RTO/NATO, Neuilly sur Seine, France, 2006 (AGARDograph AG-AVT-039)
[2] Combustion dynamics of inverted conical flames, Proceedings of the Combustion Institute, Volume 30 (2005), pp. 1717-1724
[3] Nonlinear mode triggering in a multiple flame combustor, Proceedings of the Combustion Institute, Volume 33 (2011), pp. 1121-1128
[4] A review of calculations for unsteady burning of a solid propellant, AIAA Journal, Volume 6 (1968), pp. 2241-2255
[5] Combustion instability: Acoustic interaction with a burning propellant surface, The Journal of Chemical Physics, Volume 30 (1959), pp. 1501-1514
[6] Burning of a powder under harmonically varying pressure, Journal of Applied Mechanics and Technical Physics, Volume 6 (1965), pp. 141-144
[7] Theory of nonsteady burning and combustion stability of solid propellants by flame models, Progress in Astronautics and Aeronautics, vol. 143, 1991
[8] On the theory of combustion of powders and explosives, Journal of Experimental and Theoretical Physics, Volume 12 (1942), pp. 498-524
[9] Oscillatory burning of solid propellant including gas phase time lag, Combustion Science and Technology, Volume 5 (1972), pp. 47-54
[10] K.R.A. Kumar, Computational studies on certain problems of combustion instability in solid propellants, PhD thesis, Indian Institute of Science, Bangalore, 2001.
[11] Nonlinear heterogeneous model of composite solid-propellant combustion, Journal of Propulsion and Power, Volume 18 (2002), pp. 1086-1092
[12] M. Ali Ak, H. Vural, A time-operator splitting method for numerical analysis of 1-D solid propellant non-linear combustion response, in: 39th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, Huntsville, Alabama, 20–23 July 2003.
[13] Deflagration rate, surface structure, and subsurface profile of self-deflagrating single crystals of ammonium perchlorate, AIAA Journal, Volume 8 (1970), pp. 867-872
[14] M. Tanaka, M.W. Beckstead, A three phase combustion model of ammonium perchlorate, AIAA Paper 96-2888, 1–3 July 1996.
[15] Application of continuation techniques to ammonium perchlorate plane flames, Combustion Theory and Modelling, Volume 10 (2006), pp. 771-798
[16] Pressure and initial temperature sensitivity coefficient calculations in ammonium perchlorate flames, Journal of Propulsion and Power, Volume 27 (2011), pp. 1054-1063
[17] Two asymptotic models for solid propellant combustion, Combustion Science and Technology, Volume 47 (1986), pp. 1-38
[18] Wave Propagation in Elastic Solids, North-Holland Publishing Company, 1973
[19] Multicomponent Flow Modeling, Birkhauser Boston, 1999
[20] A model for ammonium perchlorate deflagration between 20 and 100 atm, AIAA Journal, Volume 9 (1971), pp. 1345-1356
[21] Accurate boundary conditions for multicomponent reactive flows, Journal of Computational Physics, Volume 116 (1994), pp. 247-261
[22] Theoretical and Numerical Combustion, R.T. Edwards, 2005
[23] Determination of adiabatic flame speeds by boundary value methods, Combustion Science and Technology, Volume 34 (1983), pp. 79-89
[24] S. Rahman, Modélisation et simulation numérique de flammes planes instationnaires de perchlorate dʼammonium, PhD thesis, Université Paris 6, 2012.
[25] Fluid structure coupling within a monolithic model involving free surface flows, Computers and Structure, Volume 83 (2005), pp. 2100-2111
[26] An eigenvalue method for predicting the burning rates of RDX propellants, Combustion Science and Technology, Volume 124 (1997), pp. 35-82
[27] An eigenvalue method for predicting the burning rates of HMX propellants, Combustion and Flame, Volume 115 (1998), pp. 406-416
[28] Soret effects in laminar counterflow spray diffusion flames, Combustion Theory and Modelling, Volume 6 (2002), pp. 1-17
[29] R.J. Kee, F.M. Rupley, J.A. Miller, Chemkin II: A Fortran chemical kinetics package for the analysis of gas phase chemical kinetics, Technical Report SAND89-8009B, SANDIA National Laboratories, 1989.
[30] Vector computers and complex chemistry combustion, Mathematical Modeling in Combustion and Related Topics, Martinus Nijhoff Publishers, 1988, pp. 491-503
[31] Fast and accurate multicomponent transport property evaluation, Journal of Computational Physics, Volume 120 (1995), pp. 105-116
[32] The structure of transport linear systems in dilute isotropic gas mixtures, Physical Review E, Volume 53 (1996), pp. 485-492
[33] Optimized transport algorithms for flame codes, Combustion Science and Technology, Volume 118 (1996), pp. 1989-1996
[34] EGLIB, a multicomponent transport software for fast and accurate evaluation algorithms http://www.cmap.polytechnique.fr/www.eglib/home.html
[35] Effect of temperature fluctuations on high frequency acoustic coupling, Proceedings of the Combustion Institute, Volume 32 (2009), pp. 1663-1670
Cité par Sources :
Commentaires - Politique