[Impact de la dynamique de la base de la flamme sur la réponse fréquentielle non-linéaire dʼune flamme conique]
La réponse dʼune flamme conique prémélangée soumise à des perturbations de vitesse est étudiée théoriquement et expérimentalement, en se concentrant sur lʼimpact de la dynamique du point dʼaccrochage sur le comportement non-linéaire de la Fonction de Transfert de Flamme (FTF). Cette réponse est modélisée en considérant le transfert de chaleur instationnaire entre le brûleur et la base de la flamme. Les prévisions concernant la réponse du point dʼaccrochage ainsi que la Fonction de Transfert de Flamme sont comparées à des mesures pour différentes fréquences. On montre notamment que le comportement non-linéaire de la phase de la FTF résulte dʼune compétition entre les effets dus aux perturbations de vitesse, induisant une augmentation regulière de la phase de la FTF, et du point dʼaccrochage de la flamme, résultant en une saturation de la phase de la FTF à hautes fréquences. Cette analyse montre ainsi le rôle important des oscillations de la base de la flamme, contrôlant la saturation de la phase de la FTF.
The response of laminar premixed conical flames to velocity disturbances is considered theoretically and experimentally with a focus on the impact of the flame base dynamics on the non-linear behavior of the Flame Transfer Function (FTF). Unsteady heat transfer between the flame base and the burner lip is considered to model the flame base response. Predictions for the flame base response and flame transfer function are compared to measurements over a large range of frequencies. The non-linear behavior of the FTF phase is shown to result from a competition between velocity disturbances contributing to a regular increase of the phase lag with frequency and flame base oscillations leading to a saturation of the phase lag at high frequencies. Increasing the forcing level leads to an early saturation of the phase lag of the FTF at lower frequencies. This analysis demonstrates the important role of flame foot oscillations controlling the saturation of the FTF phase lag.
Mot clés : Dynamique de combustion, Fonction de transfert de flamme, Mouvement de la base de la flamme, Transfert de chaleur instationnaire
Alexis Cuquel 1, 2 ; Daniel Durox 1, 2 ; Thierry Schuller 1, 2
@article{CRMECA_2013__341_1-2_171_0, author = {Alexis Cuquel and Daniel Durox and Thierry Schuller}, title = {Impact of flame base dynamics on the non-linear frequency response of conical flames}, journal = {Comptes Rendus. M\'ecanique}, pages = {171--180}, publisher = {Elsevier}, volume = {341}, number = {1-2}, year = {2013}, doi = {10.1016/j.crme.2012.11.004}, language = {en}, }
TY - JOUR AU - Alexis Cuquel AU - Daniel Durox AU - Thierry Schuller TI - Impact of flame base dynamics on the non-linear frequency response of conical flames JO - Comptes Rendus. Mécanique PY - 2013 SP - 171 EP - 180 VL - 341 IS - 1-2 PB - Elsevier DO - 10.1016/j.crme.2012.11.004 LA - en ID - CRMECA_2013__341_1-2_171_0 ER -
Alexis Cuquel; Daniel Durox; Thierry Schuller. Impact of flame base dynamics on the non-linear frequency response of conical flames. Comptes Rendus. Mécanique, Volume 341 (2013) no. 1-2, pp. 171-180. doi : 10.1016/j.crme.2012.11.004. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2012.11.004/
[1] Combustion dynamics and instabilities: Elementary coupling and driving mechanisms, Journal of Propulsion and Power, Volume 19 (2003), pp. 722-734
[2] Experimental analysis of nonlinear flame transfer functions for different flame geometries, Proceedings of the Combustion Institute, Volume 32 (2009) no. 1, pp. 1391-1398
[3] A unified framework for nonlinear combustion instability analysis based on the flame describing function, Journal of Fluid Mechanics, Volume 615 (2008) no. 1, pp. 139-167
[4] Response of a laminar premixed flame to flow oscillations: A kinematic model and thermoacoustic instability results, Combustion and Flame, Volume 106 (1996) no. 4, pp. 487-510
[5] Theoretical and experimental determinations of the transfer function of a laminar premixed flame, Proceedings of the Combustion Institute, Volume 28 (2000) no. 1, pp. 765-773
[6] A unified model for the prediction of laminar flame transfer functions: Comparisons between conical and V-flame dynamics, Combustion and Flame, Volume 134 (2003) no. 1–2, pp. 21-34
[7] Nonlinear kinematic response of premixed flames to harmonic velocity disturbances, Proceedings of the Combustion Institute, Volume 30 (2005) no. 2, pp. 1725-1732
[8] On the dynamics of anchored flames, Combustion and Flame, Volume 82 (1990) no. 1, pp. 51-65
[9] Experimental and theoretical study of a premixed vibrating flame, Combustion and Flame, Volume 88 (1992) no. 2, pp. 149-152 (IN1, 153–168)
[10] Upstream flow dynamics of a laminar premixed conical flame submitted to acoustic modulations, Combustion and Flame, Volume 146 (2006) no. 3, pp. 541-552
[11] Experimental assessment of the acoustic response of laminar premixed Bunsen flames, Proceedings of the Combustion Institute, Volume 31 (2007) no. 1, pp. 1239-1246
[12] Linear and non-linear forced response of a conical, ducted, laminar premixed flame, Combustion and Flame, Volume 156 (2009) no. 11, pp. 2201-2212
[13] Modeling tools for the prediction of premixed flame transfer functions, Proceedings of the Combustion Institute, Volume 29 (2002) no. 1, pp. 107-113
[14] Modeling chemical flame structure and combustion dynamics in LES, Proceedings of the Combustion Institute, Volume 33 (2011) no. 1, pp. 1331-1338
[15] Linear response of stretch-affected premixed flames to flow oscillations, Combustion and Flame, Volume 156 (2009) no. 4, pp. 889-895
[16] Modeling the dynamic response of a laminar perforated-plate stabilized flame, Proceedings of the Combustion Institute, Volume 32 (2009) no. 1, pp. 1359-1366
[17] A. Cuquel, D. Durox, T. Schuller, Theoretical and experimental determination of the flame transfer function of confined premixed flames, in: 7th Mediterranean Symposium on Combustion, 2011.
[18] A kinematic model of a ducted flame, Journal of Fluid Mechanics, Volume 394 (1999) no. 1, pp. 51-72
[19] Premixed flame kinematics in a longitudinal acoustic field, Journal of Propulsion and Power, Volume 19 (2003), pp. 837-846
[20] Preetham, T. Lieuwen, Nonlinear flame-flow transfer function calculations: Flow disturbance celerity effects, AIAA Paper 2004-4035, 2004.
[21] Dynamic response of turbulent swirling flames to acoustic perturbations, Combustion Theory and Modelling, Volume 13 (2009) no. 3, pp. 487-512
[22] Response of burner-stabilized flat flames to acoustic perturbations, Combustion Theory and Modelling, Volume 6 (2002) no. 2, pp. 223-242
[23] The acoustic response of burner-stabilized flat flames: A two-dimensional numerical analysis, Combustion and Flame, Volume 133 (2003) no. 1–2, pp. 119-132
[24] Laminar burning velocity and Markstein lengths of methane/air mixtures, Combustion and Flame, Volume 121 (2000) no. 1–2, pp. 41-58
[25] Sound emission from open turbulent premixed flames, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, Volume 303 (1968) no. 1475, pp. 409-427
[26] Mechanisms of stabilization and blowoff of a premixed flame downstream of a heat-conducting perforated plate, Combustion and Flame, Volume 159 (2012) no. 3, pp. 1055-1069
Cité par Sources :
Commentaires - Politique