Comptes Rendus
Combustion, flow and spray dynamics for aerospace propulsion
Impact of flame base dynamics on the non-linear frequency response of conical flames
[Impact de la dynamique de la base de la flamme sur la réponse fréquentielle non-linéaire dʼune flamme conique]
Comptes Rendus. Mécanique, Combustion, spray and flow dynamics for aerospace propulsion, Volume 341 (2013) no. 1-2, pp. 171-180.

The response of laminar premixed conical flames to velocity disturbances is considered theoretically and experimentally with a focus on the impact of the flame base dynamics on the non-linear behavior of the Flame Transfer Function (FTF). Unsteady heat transfer between the flame base and the burner lip is considered to model the flame base response. Predictions for the flame base response Ξ(ω) and flame transfer function F(ω) are compared to measurements over a large range of frequencies. The non-linear behavior of the FTF phase is shown to result from a competition between velocity disturbances contributing to a regular increase of the phase lag with frequency and flame base oscillations leading to a saturation of the phase lag at high frequencies. Increasing the forcing level leads to an early saturation of the phase lag of the FTF at lower frequencies. This analysis demonstrates the important role of flame foot oscillations controlling the saturation of the FTF phase lag.

La réponse dʼune flamme conique prémélangée soumise à des perturbations de vitesse est étudiée théoriquement et expérimentalement, en se concentrant sur lʼimpact de la dynamique du point dʼaccrochage sur le comportement non-linéaire de la Fonction de Transfert de Flamme (FTF). Cette réponse est modélisée en considérant le transfert de chaleur instationnaire entre le brûleur et la base de la flamme. Les prévisions concernant la réponse du point dʼaccrochage Ξ(ω) ainsi que la Fonction de Transfert de Flamme F(ω) sont comparées à des mesures pour différentes fréquences. On montre notamment que le comportement non-linéaire de la phase de la FTF résulte dʼune compétition entre les effets dus aux perturbations de vitesse, induisant une augmentation regulière de la phase de la FTF, et du point dʼaccrochage de la flamme, résultant en une saturation de la phase de la FTF à hautes fréquences. Cette analyse montre ainsi le rôle important des oscillations de la base de la flamme, contrôlant la saturation de la phase de la FTF.

Publié le :
DOI : 10.1016/j.crme.2012.11.004
Keywords: Combustion dynamics, Flame transfer function, Flame base motion, Unsteady heat transfer
Mots-clés : Dynamique de combustion, Fonction de transfert de flamme, Mouvement de la base de la flamme, Transfert de chaleur instationnaire

Alexis Cuquel 1, 2 ; Daniel Durox 1, 2 ; Thierry Schuller 1, 2

1 CNRS, UPR 288, Laboratoire dʼEnergétique Moléculaire et Macroscopique, Combustion (EM2C), 92290 Châtenay-Malabry, France
2 École Centrale Paris, 92290 Châtenay-Malabry, France
@article{CRMECA_2013__341_1-2_171_0,
     author = {Alexis Cuquel and Daniel Durox and Thierry Schuller},
     title = {Impact of flame base dynamics on the non-linear frequency response of conical flames},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {171--180},
     publisher = {Elsevier},
     volume = {341},
     number = {1-2},
     year = {2013},
     doi = {10.1016/j.crme.2012.11.004},
     language = {en},
}
TY  - JOUR
AU  - Alexis Cuquel
AU  - Daniel Durox
AU  - Thierry Schuller
TI  - Impact of flame base dynamics on the non-linear frequency response of conical flames
JO  - Comptes Rendus. Mécanique
PY  - 2013
SP  - 171
EP  - 180
VL  - 341
IS  - 1-2
PB  - Elsevier
DO  - 10.1016/j.crme.2012.11.004
LA  - en
ID  - CRMECA_2013__341_1-2_171_0
ER  - 
%0 Journal Article
%A Alexis Cuquel
%A Daniel Durox
%A Thierry Schuller
%T Impact of flame base dynamics on the non-linear frequency response of conical flames
%J Comptes Rendus. Mécanique
%D 2013
%P 171-180
%V 341
%N 1-2
%I Elsevier
%R 10.1016/j.crme.2012.11.004
%G en
%F CRMECA_2013__341_1-2_171_0
Alexis Cuquel; Daniel Durox; Thierry Schuller. Impact of flame base dynamics on the non-linear frequency response of conical flames. Comptes Rendus. Mécanique, Combustion, spray and flow dynamics for aerospace propulsion, Volume 341 (2013) no. 1-2, pp. 171-180. doi : 10.1016/j.crme.2012.11.004. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2012.11.004/

[1] S. Ducruix; T. Schuller; D. Durox; S. Candel Combustion dynamics and instabilities: Elementary coupling and driving mechanisms, Journal of Propulsion and Power, Volume 19 (2003), pp. 722-734

[2] D. Durox; T. Schuller; N. Noiray; S. Candel Experimental analysis of nonlinear flame transfer functions for different flame geometries, Proceedings of the Combustion Institute, Volume 32 (2009) no. 1, pp. 1391-1398

[3] N. Noiray; D. Durox; T. Schuller; S. Candel A unified framework for nonlinear combustion instability analysis based on the flame describing function, Journal of Fluid Mechanics, Volume 615 (2008) no. 1, pp. 139-167

[4] M. Fleifil; A.M. Annaswamy; Z.A. Ghoneim; A.F. Ghoniem Response of a laminar premixed flame to flow oscillations: A kinematic model and thermoacoustic instability results, Combustion and Flame, Volume 106 (1996) no. 4, pp. 487-510

[5] S. Ducruix; D. Durox; S. Candel Theoretical and experimental determinations of the transfer function of a laminar premixed flame, Proceedings of the Combustion Institute, Volume 28 (2000) no. 1, pp. 765-773

[6] T. Schuller; D. Durox; S. Candel A unified model for the prediction of laminar flame transfer functions: Comparisons between conical and V-flame dynamics, Combustion and Flame, Volume 134 (2003) no. 1–2, pp. 21-34

[7] T. Lieuwen Nonlinear kinematic response of premixed flames to harmonic velocity disturbances, Proceedings of the Combustion Institute, Volume 30 (2005) no. 2, pp. 1725-1732

[8] L. Boyer; J. Quinard On the dynamics of anchored flames, Combustion and Flame, Volume 82 (1990) no. 1, pp. 51-65

[9] F. Baillot; D. Durox; R. Prudʼhomme Experimental and theoretical study of a premixed vibrating flame, Combustion and Flame, Volume 88 (1992) no. 2, pp. 149-152 (IN1, 153–168)

[10] A.L. Birbaud; D. Durox; S. Candel Upstream flow dynamics of a laminar premixed conical flame submitted to acoustic modulations, Combustion and Flame, Volume 146 (2006) no. 3, pp. 541-552

[11] V.N. Kornilov; K.R.A.M. Schreel; L.P.H. de Goey Experimental assessment of the acoustic response of laminar premixed Bunsen flames, Proceedings of the Combustion Institute, Volume 31 (2007) no. 1, pp. 1239-1246

[12] N. Karimi; M.J. Brear; S.-H. Jin; J.P. Monty Linear and non-linear forced response of a conical, ducted, laminar premixed flame, Combustion and Flame, Volume 156 (2009) no. 11, pp. 2201-2212

[13] T. Schuller; S. Ducruix; D. Durox; S. Candel Modeling tools for the prediction of premixed flame transfer functions, Proceedings of the Combustion Institute, Volume 29 (2002) no. 1, pp. 107-113

[14] P. Auzillon; B. Fiorina; R. Vicquelin; N. Darabiha; O. Gicquel; D. Veynante Modeling chemical flame structure and combustion dynamics in LES, Proceedings of the Combustion Institute, Volume 33 (2011) no. 1, pp. 1331-1338

[15] H.Y. Wang; C.K. Law; T. Lieuwen Linear response of stretch-affected premixed flames to flow oscillations, Combustion and Flame, Volume 156 (2009) no. 4, pp. 889-895

[16] H.M. Altay; S. Park; D. Wu; D. Wee; A.M. Annaswamy; A.F. Ghoniem Modeling the dynamic response of a laminar perforated-plate stabilized flame, Proceedings of the Combustion Institute, Volume 32 (2009) no. 1, pp. 1359-1366

[17] A. Cuquel, D. Durox, T. Schuller, Theoretical and experimental determination of the flame transfer function of confined premixed flames, in: 7th Mediterranean Symposium on Combustion, 2011.

[18] A.P. Dowling A kinematic model of a ducted flame, Journal of Fluid Mechanics, Volume 394 (1999) no. 1, pp. 51-72

[19] D. Lee; T. Lieuwen Premixed flame kinematics in a longitudinal acoustic field, Journal of Propulsion and Power, Volume 19 (2003), pp. 837-846

[20] Preetham, T. Lieuwen, Nonlinear flame-flow transfer function calculations: Flow disturbance celerity effects, AIAA Paper 2004-4035, 2004.

[21] Giulio Borghesi; Fernando Biagioli; Bruno Schuermans Dynamic response of turbulent swirling flames to acoustic perturbations, Combustion Theory and Modelling, Volume 13 (2009) no. 3, pp. 487-512

[22] R. Rook; L.P.H. de Goey; L.M.T. Somers; K.R.A.M. Schreel; R. Parchen Response of burner-stabilized flat flames to acoustic perturbations, Combustion Theory and Modelling, Volume 6 (2002) no. 2, pp. 223-242

[23] R. Rook; L.P.H. de Goey The acoustic response of burner-stabilized flat flames: A two-dimensional numerical analysis, Combustion and Flame, Volume 133 (2003) no. 1–2, pp. 119-132

[24] X.J. Gu; M.Z. Haq; M. Lawes; R. Woolley Laminar burning velocity and Markstein lengths of methane/air mixtures, Combustion and Flame, Volume 121 (2000) no. 1–2, pp. 41-58

[25] I.R. Hurle; R.B. Price; T.M. Sugden; A. Thomas Sound emission from open turbulent premixed flames, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, Volume 303 (1968) no. 1475, pp. 409-427

[26] Kushal S. Kedia; Ahmed F. Ghoniem Mechanisms of stabilization and blowoff of a premixed flame downstream of a heat-conducting perforated plate, Combustion and Flame, Volume 159 (2012) no. 3, pp. 1055-1069

  • Mathieu Cances; Luc Giraud; Michael Bauerheim; Laurent Gicquel; Franck Nicoud Robustness and reliability of state-space, frame-based modeling for thermoacoustics, Journal of Computational Physics, Volume 520 (2025), p. 113472 | DOI:10.1016/j.jcp.2024.113472
  • Jianyi Zheng; Lei Li; Guoqing Wang; Xi Xia; Liangliang Xu; Fei Qi Nonlinear response of conical flame to dual-frequency excitation, Applications in Energy and Combustion Science, Volume 18 (2024), p. 100266 | DOI:10.1016/j.jaecs.2024.100266
  • Alessandro Giannotta; Stefania Cherubini; Pietro De Palma; Matthew P. Juniper The effect of flame curvature and flame base movement on the frequency response of a conical Bunsen flame, Combustion and Flame, Volume 259 (2024), p. 113179 | DOI:10.1016/j.combustflame.2023.113179
  • Hamed F. Ganji; Viktor Kornilov; Jeroen van Oijen; Ines Lopez Arteaga; Philip de Goey Thermoacoustic stability analysis and robust design of burner-deck-anchored flames using flame transfer function composition, Combustion and Flame, Volume 269 (2024), p. 113631 | DOI:10.1016/j.combustflame.2024.113631
  • Linlin Yang; Yiqing Wang; Thorsten Zirwes; Feichi Zhang; Henning Bockhorn; Zheng Chen Effects of Intrinsic Instabilities on the Response of Premixed Hydrogen/Air Conical Flames to Inlet Flow Perturbations, Flow, Turbulence and Combustion, Volume 112 (2024) no. 4, p. 1275 | DOI:10.1007/s10494-024-00535-5
  • Matthew Yoko; Matthew P. Juniper Adjoint-accelerated Bayesian inference applied to the thermoacoustic behaviour of a ducted conical flame, Journal of Fluid Mechanics, Volume 985 (2024) | DOI:10.1017/jfm.2024.276
  • Faizan H. Vance; Çetin Alanyalıoğlu; Christian Hasse Analysis of Lewis number effects on dynamic response of laminar premixed flames, Combustion and Flame, Volume 248 (2023), p. 112508 | DOI:10.1016/j.combustflame.2022.112508
  • Myunggeun Ahn; Taesung Kim; Youngbin Yoon Comparison of flame response characteristics between Non‐premixed and premixed flames under acoustic excitation, Experimental Thermal and Fluid Science, Volume 139 (2022), p. 110707 | DOI:10.1016/j.expthermflusci.2022.110707
  • P.W. Agostinelli; D. Laera; I. Boxx; L. Gicquel; T. Poinsot Impact of wall heat transfer in Large Eddy Simulation of flame dynamics in a swirled combustion chamber, Combustion and Flame, Volume 234 (2021), p. 111728 | DOI:10.1016/j.combustflame.2021.111728
  • Hans Yu; Matthew P. Juniper; Luca Magri A data-driven kinematic model of a ducted premixed flame, Proceedings of the Combustion Institute, Volume 38 (2021) no. 4, p. 6231 | DOI:10.1016/j.proci.2020.06.137
  • Thierry Schuller; Thierry Poinsot; Sébastien Candel Dynamics and control of premixed combustion systems based on flame transfer and describing functions, Journal of Fluid Mechanics, Volume 894 (2020) | DOI:10.1017/jfm.2020.239
  • T.L. Kaiser; G. Öztarlik; L. Selle; T. Poinsot Impact of symmetry breaking on the Flame Transfer Function of a laminar premixed flame, Proceedings of the Combustion Institute, Volume 37 (2019) no. 2, p. 1953 | DOI:10.1016/j.proci.2018.06.047
  • Daniel Mejia; Maxence Miguel-Brebion; Abdulla Ghani; Thomas Kaiser; Florent Duchaine; Laurent Selle; Thierry Poinsot Influence of flame-holder temperature on the acoustic flame transfer functions of a laminar flame, Combustion and Flame, Volume 188 (2018), p. 5 | DOI:10.1016/j.combustflame.2017.09.016
  • Christian Kraus; Laurent Selle; Thierry Poinsot Coupling heat transfer and large eddy simulation for combustion instability prediction in a swirl burner, Combustion and Flame, Volume 191 (2018), p. 239 | DOI:10.1016/j.combustflame.2018.01.007
  • Dan Michaels; Ahmed F. Ghoniem Leading edge dynamics of lean premixed flames stabilized on a bluff body, Combustion and Flame, Volume 191 (2018), p. 39 | DOI:10.1016/j.combustflame.2017.12.020
  • Lukai Zheng; Shuaida Ji; Yang Zhang Lifted and reattached behaviour of laminar premixed flame under external acoustic excitation, Experimental Thermal and Fluid Science, Volume 98 (2018), p. 683 | DOI:10.1016/j.expthermflusci.2018.07.013
  • Luke J. Humphrey; Vishal S. Acharya; Dong-Hyuk Shin; Timothy C. Lieuwen Modeling the Response of Turbulent Flames to Harmonic Forcing, Combustion Science and Technology, Volume 189 (2017) no. 2, p. 187 | DOI:10.1080/00102202.2016.1202245
  • R. Gaudron; M. Gatti; C. Mirat; T. Schuller Impact of the injector size on the transfer functions of premixed laminar conical flames, Combustion and Flame, Volume 179 (2017), p. 138 | DOI:10.1016/j.combustflame.2017.01.022
  • T. Poinsot Prediction and control of combustion instabilities in real engines, Proceedings of the Combustion Institute, Volume 36 (2017) no. 1, p. 1 | DOI:10.1016/j.proci.2016.05.007
  • D. Mejia; M. Bauerheim; P. Xavier; B. Ferret; L. Selle; T. Poinsot Stabilization of a premixed laminar flame on a rotating cylinder, Proceedings of the Combustion Institute, Volume 36 (2017) no. 1, p. 1447 | DOI:10.1016/j.proci.2016.06.138
  • S. Schlimpert; M. Meinke; W. Schröder Nonlinear analysis of an acoustically excited laminar premixed flame, Combustion and Flame, Volume 163 (2016), p. 337 | DOI:10.1016/j.combustflame.2015.09.035
  • Alessandro Orchini; Matthew P. Juniper Linear stability and adjoint sensitivity analysis of thermoacoustic networks with premixed flames, Combustion and Flame, Volume 165 (2016), p. 97 | DOI:10.1016/j.combustflame.2015.10.011
  • D. Mejia; M. Miguel-Brebion; L. Selle On the experimental determination of growth and damping rates for combustion instabilities, Combustion and Flame, Volume 169 (2016), p. 287 | DOI:10.1016/j.combustflame.2016.05.004
  • F. Biagioli; A. Scarpato; K. J. Syed Dynamic Response of Swirl Stabilized Turbulent Premixed Flames Based on the Helmholtz-Hodge Velocity Decomposition, Flow, Turbulence and Combustion, Volume 96 (2016) no. 4, p. 1005 | DOI:10.1007/s10494-016-9736-3
  • S. Schlimpert; A. Feldhusen; J. H. Grimmen; B. Roidl; M. Meinke; W. Schröder Hydrodynamic instability and shear layer effects in turbulent premixed combustion, Physics of Fluids, Volume 28 (2016) no. 1 | DOI:10.1063/1.4940161
  • Stephan Schlimpert; Santosh Hemchandra; Matthias Meinke; Wolfgang Schröder Hydrodynamic instability and shear layer effect on the response of an acoustically excited laminar premixed flame, Combustion and Flame, Volume 162 (2015) no. 2, p. 345 | DOI:10.1016/j.combustflame.2014.08.001
  • Kushal S. Kedia; Ahmed F. Ghoniem The response of a harmonically forced premixed flame stabilized on a heat-conducting bluff-body, Proceedings of the Combustion Institute, Volume 35 (2015) no. 1, p. 1065 | DOI:10.1016/j.proci.2014.06.007
  • D. Mejia; L. Selle; R. Bazile; T. Poinsot Wall-temperature effects on flame response to acoustic oscillations, Proceedings of the Combustion Institute, Volume 35 (2015) no. 3, p. 3201 | DOI:10.1016/j.proci.2014.07.015
  • Michael Malanoski; Michael Aguilar; Dong-Hyuk Shin; Tim Lieuwen Flame Leading Edge and Flow Dynamics in a Swirling, Lifted Flame, Combustion Science and Technology, Volume 186 (2014) no. 12, p. 1816 | DOI:10.1080/00102202.2014.923410
  • Nader Karimi Response of a conical, laminar premixed flame to low amplitude acoustic forcing – A comparison between experiment and kinematic theories, Energy, Volume 78 (2014), p. 490 | DOI:10.1016/j.energy.2014.10.036

Cité par 30 documents. Sources : Crossref

Commentaires - Politique