[Impact de la dynamique de la base de la flamme sur la réponse fréquentielle non-linéaire dʼune flamme conique]
The response of laminar premixed conical flames to velocity disturbances is considered theoretically and experimentally with a focus on the impact of the flame base dynamics on the non-linear behavior of the Flame Transfer Function (FTF). Unsteady heat transfer between the flame base and the burner lip is considered to model the flame base response. Predictions for the flame base response
La réponse dʼune flamme conique prémélangée soumise à des perturbations de vitesse est étudiée théoriquement et expérimentalement, en se concentrant sur lʼimpact de la dynamique du point dʼaccrochage sur le comportement non-linéaire de la Fonction de Transfert de Flamme (FTF). Cette réponse est modélisée en considérant le transfert de chaleur instationnaire entre le brûleur et la base de la flamme. Les prévisions concernant la réponse du point dʼaccrochage
Mots-clés : Dynamique de combustion, Fonction de transfert de flamme, Mouvement de la base de la flamme, Transfert de chaleur instationnaire
Alexis Cuquel 1, 2 ; Daniel Durox 1, 2 ; Thierry Schuller 1, 2
@article{CRMECA_2013__341_1-2_171_0, author = {Alexis Cuquel and Daniel Durox and Thierry Schuller}, title = {Impact of flame base dynamics on the non-linear frequency response of conical flames}, journal = {Comptes Rendus. M\'ecanique}, pages = {171--180}, publisher = {Elsevier}, volume = {341}, number = {1-2}, year = {2013}, doi = {10.1016/j.crme.2012.11.004}, language = {en}, }
TY - JOUR AU - Alexis Cuquel AU - Daniel Durox AU - Thierry Schuller TI - Impact of flame base dynamics on the non-linear frequency response of conical flames JO - Comptes Rendus. Mécanique PY - 2013 SP - 171 EP - 180 VL - 341 IS - 1-2 PB - Elsevier DO - 10.1016/j.crme.2012.11.004 LA - en ID - CRMECA_2013__341_1-2_171_0 ER -
Alexis Cuquel; Daniel Durox; Thierry Schuller. Impact of flame base dynamics on the non-linear frequency response of conical flames. Comptes Rendus. Mécanique, Combustion, spray and flow dynamics for aerospace propulsion, Volume 341 (2013) no. 1-2, pp. 171-180. doi : 10.1016/j.crme.2012.11.004. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2012.11.004/
[1] Combustion dynamics and instabilities: Elementary coupling and driving mechanisms, Journal of Propulsion and Power, Volume 19 (2003), pp. 722-734
[2] Experimental analysis of nonlinear flame transfer functions for different flame geometries, Proceedings of the Combustion Institute, Volume 32 (2009) no. 1, pp. 1391-1398
[3] A unified framework for nonlinear combustion instability analysis based on the flame describing function, Journal of Fluid Mechanics, Volume 615 (2008) no. 1, pp. 139-167
[4] Response of a laminar premixed flame to flow oscillations: A kinematic model and thermoacoustic instability results, Combustion and Flame, Volume 106 (1996) no. 4, pp. 487-510
[5] Theoretical and experimental determinations of the transfer function of a laminar premixed flame, Proceedings of the Combustion Institute, Volume 28 (2000) no. 1, pp. 765-773
[6] A unified model for the prediction of laminar flame transfer functions: Comparisons between conical and V-flame dynamics, Combustion and Flame, Volume 134 (2003) no. 1–2, pp. 21-34
[7] Nonlinear kinematic response of premixed flames to harmonic velocity disturbances, Proceedings of the Combustion Institute, Volume 30 (2005) no. 2, pp. 1725-1732
[8] On the dynamics of anchored flames, Combustion and Flame, Volume 82 (1990) no. 1, pp. 51-65
[9] Experimental and theoretical study of a premixed vibrating flame, Combustion and Flame, Volume 88 (1992) no. 2, pp. 149-152 (IN1, 153–168)
[10] Upstream flow dynamics of a laminar premixed conical flame submitted to acoustic modulations, Combustion and Flame, Volume 146 (2006) no. 3, pp. 541-552
[11] Experimental assessment of the acoustic response of laminar premixed Bunsen flames, Proceedings of the Combustion Institute, Volume 31 (2007) no. 1, pp. 1239-1246
[12] Linear and non-linear forced response of a conical, ducted, laminar premixed flame, Combustion and Flame, Volume 156 (2009) no. 11, pp. 2201-2212
[13] Modeling tools for the prediction of premixed flame transfer functions, Proceedings of the Combustion Institute, Volume 29 (2002) no. 1, pp. 107-113
[14] Modeling chemical flame structure and combustion dynamics in LES, Proceedings of the Combustion Institute, Volume 33 (2011) no. 1, pp. 1331-1338
[15] Linear response of stretch-affected premixed flames to flow oscillations, Combustion and Flame, Volume 156 (2009) no. 4, pp. 889-895
[16] Modeling the dynamic response of a laminar perforated-plate stabilized flame, Proceedings of the Combustion Institute, Volume 32 (2009) no. 1, pp. 1359-1366
[17] A. Cuquel, D. Durox, T. Schuller, Theoretical and experimental determination of the flame transfer function of confined premixed flames, in: 7th Mediterranean Symposium on Combustion, 2011.
[18] A kinematic model of a ducted flame, Journal of Fluid Mechanics, Volume 394 (1999) no. 1, pp. 51-72
[19] Premixed flame kinematics in a longitudinal acoustic field, Journal of Propulsion and Power, Volume 19 (2003), pp. 837-846
[20] Preetham, T. Lieuwen, Nonlinear flame-flow transfer function calculations: Flow disturbance celerity effects, AIAA Paper 2004-4035, 2004.
[21] Dynamic response of turbulent swirling flames to acoustic perturbations, Combustion Theory and Modelling, Volume 13 (2009) no. 3, pp. 487-512
[22] Response of burner-stabilized flat flames to acoustic perturbations, Combustion Theory and Modelling, Volume 6 (2002) no. 2, pp. 223-242
[23] The acoustic response of burner-stabilized flat flames: A two-dimensional numerical analysis, Combustion and Flame, Volume 133 (2003) no. 1–2, pp. 119-132
[24] Laminar burning velocity and Markstein lengths of methane/air mixtures, Combustion and Flame, Volume 121 (2000) no. 1–2, pp. 41-58
[25] Sound emission from open turbulent premixed flames, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, Volume 303 (1968) no. 1475, pp. 409-427
[26] Mechanisms of stabilization and blowoff of a premixed flame downstream of a heat-conducting perforated plate, Combustion and Flame, Volume 159 (2012) no. 3, pp. 1055-1069
- Robustness and reliability of state-space, frame-based modeling for thermoacoustics, Journal of Computational Physics, Volume 520 (2025), p. 113472 | DOI:10.1016/j.jcp.2024.113472
- Nonlinear response of conical flame to dual-frequency excitation, Applications in Energy and Combustion Science, Volume 18 (2024), p. 100266 | DOI:10.1016/j.jaecs.2024.100266
- The effect of flame curvature and flame base movement on the frequency response of a conical Bunsen flame, Combustion and Flame, Volume 259 (2024), p. 113179 | DOI:10.1016/j.combustflame.2023.113179
- Thermoacoustic stability analysis and robust design of burner-deck-anchored flames using flame transfer function composition, Combustion and Flame, Volume 269 (2024), p. 113631 | DOI:10.1016/j.combustflame.2024.113631
- Effects of Intrinsic Instabilities on the Response of Premixed Hydrogen/Air Conical Flames to Inlet Flow Perturbations, Flow, Turbulence and Combustion, Volume 112 (2024) no. 4, p. 1275 | DOI:10.1007/s10494-024-00535-5
- Adjoint-accelerated Bayesian inference applied to the thermoacoustic behaviour of a ducted conical flame, Journal of Fluid Mechanics, Volume 985 (2024) | DOI:10.1017/jfm.2024.276
- Analysis of Lewis number effects on dynamic response of laminar premixed flames, Combustion and Flame, Volume 248 (2023), p. 112508 | DOI:10.1016/j.combustflame.2022.112508
- Comparison of flame response characteristics between Non‐premixed and premixed flames under acoustic excitation, Experimental Thermal and Fluid Science, Volume 139 (2022), p. 110707 | DOI:10.1016/j.expthermflusci.2022.110707
- Impact of wall heat transfer in Large Eddy Simulation of flame dynamics in a swirled combustion chamber, Combustion and Flame, Volume 234 (2021), p. 111728 | DOI:10.1016/j.combustflame.2021.111728
- A data-driven kinematic model of a ducted premixed flame, Proceedings of the Combustion Institute, Volume 38 (2021) no. 4, p. 6231 | DOI:10.1016/j.proci.2020.06.137
- Dynamics and control of premixed combustion systems based on flame transfer and describing functions, Journal of Fluid Mechanics, Volume 894 (2020) | DOI:10.1017/jfm.2020.239
- Impact of symmetry breaking on the Flame Transfer Function of a laminar premixed flame, Proceedings of the Combustion Institute, Volume 37 (2019) no. 2, p. 1953 | DOI:10.1016/j.proci.2018.06.047
- Influence of flame-holder temperature on the acoustic flame transfer functions of a laminar flame, Combustion and Flame, Volume 188 (2018), p. 5 | DOI:10.1016/j.combustflame.2017.09.016
- Coupling heat transfer and large eddy simulation for combustion instability prediction in a swirl burner, Combustion and Flame, Volume 191 (2018), p. 239 | DOI:10.1016/j.combustflame.2018.01.007
- Leading edge dynamics of lean premixed flames stabilized on a bluff body, Combustion and Flame, Volume 191 (2018), p. 39 | DOI:10.1016/j.combustflame.2017.12.020
- Lifted and reattached behaviour of laminar premixed flame under external acoustic excitation, Experimental Thermal and Fluid Science, Volume 98 (2018), p. 683 | DOI:10.1016/j.expthermflusci.2018.07.013
- Modeling the Response of Turbulent Flames to Harmonic Forcing, Combustion Science and Technology, Volume 189 (2017) no. 2, p. 187 | DOI:10.1080/00102202.2016.1202245
- Impact of the injector size on the transfer functions of premixed laminar conical flames, Combustion and Flame, Volume 179 (2017), p. 138 | DOI:10.1016/j.combustflame.2017.01.022
- Prediction and control of combustion instabilities in real engines, Proceedings of the Combustion Institute, Volume 36 (2017) no. 1, p. 1 | DOI:10.1016/j.proci.2016.05.007
- Stabilization of a premixed laminar flame on a rotating cylinder, Proceedings of the Combustion Institute, Volume 36 (2017) no. 1, p. 1447 | DOI:10.1016/j.proci.2016.06.138
- Nonlinear analysis of an acoustically excited laminar premixed flame, Combustion and Flame, Volume 163 (2016), p. 337 | DOI:10.1016/j.combustflame.2015.09.035
- Linear stability and adjoint sensitivity analysis of thermoacoustic networks with premixed flames, Combustion and Flame, Volume 165 (2016), p. 97 | DOI:10.1016/j.combustflame.2015.10.011
- On the experimental determination of growth and damping rates for combustion instabilities, Combustion and Flame, Volume 169 (2016), p. 287 | DOI:10.1016/j.combustflame.2016.05.004
- Dynamic Response of Swirl Stabilized Turbulent Premixed Flames Based on the Helmholtz-Hodge Velocity Decomposition, Flow, Turbulence and Combustion, Volume 96 (2016) no. 4, p. 1005 | DOI:10.1007/s10494-016-9736-3
- Hydrodynamic instability and shear layer effects in turbulent premixed combustion, Physics of Fluids, Volume 28 (2016) no. 1 | DOI:10.1063/1.4940161
- Hydrodynamic instability and shear layer effect on the response of an acoustically excited laminar premixed flame, Combustion and Flame, Volume 162 (2015) no. 2, p. 345 | DOI:10.1016/j.combustflame.2014.08.001
- The response of a harmonically forced premixed flame stabilized on a heat-conducting bluff-body, Proceedings of the Combustion Institute, Volume 35 (2015) no. 1, p. 1065 | DOI:10.1016/j.proci.2014.06.007
- Wall-temperature effects on flame response to acoustic oscillations, Proceedings of the Combustion Institute, Volume 35 (2015) no. 3, p. 3201 | DOI:10.1016/j.proci.2014.07.015
- Flame Leading Edge and Flow Dynamics in a Swirling, Lifted Flame, Combustion Science and Technology, Volume 186 (2014) no. 12, p. 1816 | DOI:10.1080/00102202.2014.923410
- Response of a conical, laminar premixed flame to low amplitude acoustic forcing – A comparison between experiment and kinematic theories, Energy, Volume 78 (2014), p. 490 | DOI:10.1016/j.energy.2014.10.036
Cité par 30 documents. Sources : Crossref
Commentaires - Politique