Les instabilités de combustion posent des problèmes récurrents dans les foyers de combustion et peuvent causer des dommages importants et irréversibles aux structures. Lʼaccumulation dʼénergie acoustique au voisinage des modes propres du système résulte dʼun couplage résonant entre les perturbations de pression et du taux de dégagement de chaleur dans la zone de réaction. La prévision de ces fréquences et du champ acoustique associé est importante pour optimiser la conception des systèmes de contrôle actif ou passif empêchant lʼamplification de ces instabilités. Dans cette étude, le banc de combustion CESAM est utilisé pour stabiliser des flammes propane–air swirlées partiellement prémélangées. Dans le tube de prémélange, les gaz frais sont injectés tangentiellement pour mettre en rotation lʼécoulement, la flamme étant stabilisée dans la chambre de combustion par un changement brusque de section. Le fond du tube de mélange est équipé dʼun système de contrôle dʼimpédance (ICS) permettant dʼajuster le coefficient de réflexion acoustique. Lʼacoustique de ce système de cavités couplées est étudiée analytiquement en prenant en compte lʼimpédance acoustique mesurée au fond du tube de prémélange et dans les lignes dʼalimentation. La longueur de la chambre est aussi modifiée pour examiner les effets de la géométrie sur ces prévisions. On montre que le tube de prémélange et la chambre peuvent être considérés comme acoustiquement découplés pour des valeurs faibles de lʼindice de couplage défini ici. Ceci nʼest cependant pas valable dans la région où les fréquences sont voisines. Dans ce cas, seule lʼanalyse de lʼamortissement de chacun des modes permet de déterminer si les deux cavités sont couplées ou non. Il est par conséquent possible de découpler acoustiquement deux cavités en jouant sur lʼindice de couplage ou bien en modifiant lʼamortissement de lʼune des cavités lorsque leurs fréquences propres sont proches.
When coupled to acoustics, unsteady heat release oscillations may cause recurrent problems in many combustion chambers, potentially leading to dramatic damages to the structure. Accumulation of acoustic energy around the eigenmodes of the combustor results from the resonant coupling between pressure disturbances in the flame region with synchronized heat release rate perturbations. Predicting these frequencies and the corresponding sound pressure field is a key issue to design passive or active control systems to prevent the growth of these instabilities. In this study, an acoustically controlled combustion test bench CESAM is used to stabilize a partially premixed swirling propane–air flame. In the premixing tube, reactants are injected tangentially to generate the swirling flow, the flame being stabilized in the combustion chamber by a sudden expansion of the cross section. The premixer backplane is equipped with an Impedance Control System (ICS) allowing to adjust the acoustic reflection coefficient at this location. Acoustics of the coupled-cavity system formed by the premixer and the combustion chamber is investigated analytically by taking into account the measured acoustic impedances at the premixer backplane and in the feeding lines. The chamber length is also modified to examine the effects of the geometry on these predictions. It is shown that the premixer and combustion chamber can be considered as acoustically decoupled for small values of the acoustic coupling index, defined in the article. This offers flexible solutions to control the pressure distribution within the combustor, except when these frequencies match. When the frequencies are close to each other, only the analysis of the damping of the different cavities enables to indicate whether the system is coupled or not. Modifying either the acoustic coupling index or the damping values featuring the same frequency appears then as alternative solutions to decouple cavities.
Mots clés : Combustion, Énergie acoustique
Franck Richecoeur 1, 2 ; Thierry Schuller 1, 2 ; Ammar Lamraoui 1, 2 ; Sébastien Ducruix 1, 2
@article{CRMECA_2013__341_1-2_141_0, author = {Franck Richecoeur and Thierry Schuller and Ammar Lamraoui and S\'ebastien Ducruix}, title = {Analytical and experimental investigations of gas turbine model combustor acoustics operated at atmospheric pressure}, journal = {Comptes Rendus. M\'ecanique}, pages = {141--151}, publisher = {Elsevier}, volume = {341}, number = {1-2}, year = {2013}, doi = {10.1016/j.crme.2012.11.008}, language = {en}, }
TY - JOUR AU - Franck Richecoeur AU - Thierry Schuller AU - Ammar Lamraoui AU - Sébastien Ducruix TI - Analytical and experimental investigations of gas turbine model combustor acoustics operated at atmospheric pressure JO - Comptes Rendus. Mécanique PY - 2013 SP - 141 EP - 151 VL - 341 IS - 1-2 PB - Elsevier DO - 10.1016/j.crme.2012.11.008 LA - en ID - CRMECA_2013__341_1-2_141_0 ER -
%0 Journal Article %A Franck Richecoeur %A Thierry Schuller %A Ammar Lamraoui %A Sébastien Ducruix %T Analytical and experimental investigations of gas turbine model combustor acoustics operated at atmospheric pressure %J Comptes Rendus. Mécanique %D 2013 %P 141-151 %V 341 %N 1-2 %I Elsevier %R 10.1016/j.crme.2012.11.008 %G en %F CRMECA_2013__341_1-2_141_0
Franck Richecoeur; Thierry Schuller; Ammar Lamraoui; Sébastien Ducruix. Analytical and experimental investigations of gas turbine model combustor acoustics operated at atmospheric pressure. Comptes Rendus. Mécanique, Volume 341 (2013) no. 1-2, pp. 141-151. doi : 10.1016/j.crme.2012.11.008. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2012.11.008/
[1] Combustion dynamics and control: Progress and challenges, Proceedings of the Combustion Institute, Volume 29 (2002) no. 1, pp. 1-28
[2] Flame dynamics and combustion noise: progress and challenges, International Journal of Aeroacoustics, Volume 8 (2009) no. 1, pp. 1-56
[3] Vortex-driven acoustically coupled combustion instabilities, Journal of Fluid Mechanics, Volume 177 (1987), pp. 265-292
[4] Low-frequency pressure oscillations in a model ramjet combustor, Journal of Fluid Mechanics, Volume 232 (1991), pp. 47-72
[5] The calculation of thermoacoustic oscillations, Journal of Sound and Vibration, Volume 180 (1995) no. 4, pp. 557-581
[6] Influence of the mean temperature field on the acoustic mode structure in a dump combustor, Journal of Propulsion and Power, Volume 2 (1985) no. 4, pp. 311-316
[7] A review of active control of combustion instabilities, Progress in Energy and Combustion Science, Volume 19 (1993), pp. 1-29
[8] Passive control of combustion dynamics in stationary gas turbines, Journal of Propulsion and Power, Volume 19 (2003) no. 5, pp. 795-810
[9] Detailed analysis of the acoustic mode shapes of an annular combustor, Journal of Engineering for Gas Turbines and Power, Volume 124 (2002) no. 1, pp. 3-9
[10] Studies of mean and unsteady flow in a swirled combustor using experiments, acoustic analysis and large eddy simulations, Combustion and Flame, Volume 141 (2005) no. 1–2, pp. 40-54
[11] About the zero Mach number assumption in the calculation of thermoacoustic instabilities, International Journal of Spray and Combustion Dynamics, Volume 1 (2009) no. 1, pp. 67-112
[12] Examination of mode shapes in an unstable model combustor, Journal of Sound and Vibration, Volume 330 (2011), pp. 61-74
[13] Joint use of compressible large-eddy simulation and Helmholtz solvers for the analysis of rotating modes in an industrial swirled burner, Combustion and Flame, Volume 145 (2006), pp. 194-205
[14] A finite element method for three-dimensional analysis of thermo-acoustic combustion instability, Journal of Engineering for Gas Turbines and Power, Volume 133 (2011), p. 011506 (13 pages)
[15] Acoustic modes in combustors with complex impedances and multidimensional active flames, AIAA Journal, Volume 45 (2007) no. 2, pp. 426-441
[16] Prediction of the efficiency of acoustic damping cavities, Journal of Propulsion and Power, Volume 24 (2008) no. 3, pp. 516-523
[17] Numerical and experimental study of acoustic damping generated by perforated screens, AIAA Journal, Volume 42 (2004) no. 8, pp. 1543-1549
[18] Resonance frequencies and damping of a combustor acoustically coupled to an absorber, Journal of Propulsion and Power, Volume 24 (2008) no. 3, pp. 524-533
[19] Acoustic analysis of gas turbine combustors, Journal of Propulsion and Power, Volume 19 (2003) no. 5, pp. 751-764
[20] Theoretical and Numerical Combustion, Edwards, 2005
[21] N. Tran, Towards predictive numerical simulations of advanced combustors experiments and modelling of instabilities in acoustically controlled combustion chambers, PhD thesis, École Centrale Paris, 2008.
[22] A. Lamraoui, Acoustique et dynamique de flamme dans un foyer turbulent prémélangé swirlé : application à lʼétude du bruit de combustion dans les chambres de turbines à gaz, PhD thesis, École Centrale Paris, 2011.
[23] Damping combustion instabilities with perforates at the premixer inlet of a swirled burner, Proceedings of the Combustion Institute, Volume 32 (2009), pp. 2917-2924
[24] Passive control of the inlet acoustic boundary condition of a swirled burner at high amplitude combustion instabilities, Journal of Engineering for Gas Turbines and Power, Volume 131 (2009) no. 5, p. 051502 (7 pages)
[25] Effect of perforated plates on the acoustics of annular combustors, AIAA Journal, Volume 50 (2012) no. 12, pp. 2629-2642
[26] Cross-spectral method of measuring acoustic intensity without error caused by instrument mismatch, Journal of the Acoustical Society of America, Volume 64 (1978) no. 6, pp. 1613-1616
[27] A methodology for on the fly acoustic characterization of the feeding line impedances in a turbulent swirled combustor, Journal of Engineering for Gas Turbines and Power, Volume 133 (2011) no. 1, p. 011504 (7 pages)
[28] A. Lamraoui, F. Richecoeur, S. Ducruix, T. Schuller, Experimental analysis of simultaneous non-harmonically related unstable modes in a swirled combustor, in: Proceedings of ASME Turbo Expo, number GT2011-46701, 2011.
[29] Mode localization and eigenvalue loci veering phenomena in disordered structures, Journal of Sound and Vibration, Volume 126 (1988) no. 3, pp. 485-502
[30] Estimation and veering analysis of nonlinear resonant frequencies of cracked plates, Journal of Sound and Vibration, Volume 326 (2009) no. 3–5, pp. 725-739
[31] On veering of eigenvalue loci, Journal of Vibration and Acoustics, Volume 131 (2009) no. 5, p. 054501
Cité par Sources :
Commentaires - Politique