Comptes Rendus
Combustion, flow and spray dynamics for aerospace propulsion
Compressible and low Mach number LES of a swirl experimental burner
Comptes Rendus. Mécanique, Volume 341 (2013) no. 1-2, pp. 277-287.

Large-Eddy Simulations (LES) of a swirl experimental burner are performed using a compressible and a low Mach number solver. The investigations are focused on the modeling strategies in LES aimed at validating the flow predictions and principally the associated pressure losses. Accurate prediction of pressure drop through complex geometries, such as those typically encountered in industrial swirlers, is indeed of paramount importance to design and optimize the engine efficiency. LES is here probed and tested to identify the model parameters affecting pressure losses: grid resolution, wall treatment or solver accuracy, with the aim of highlighting the requirements for accurate pressure drop predictions. Results show that for the high Reynolds number flow considered, the wall law model provides the best predictions and minimizes the error compared to experimental findings with a reasonable overall CPU cost.

Des Simulations aux Grandes Échelles dʼun brûleur expérimental swirlé sont réalisées au moyen de deux codes, lʼun compressible et lʼautre bas Mach. Les simulations sont obtenues utilisant les deux codes pour évaluer leur performance et déduire une stratégie potentielle de modélisation. Les champs moyens de vitesse sont comparés aux résultats expérimentaux. La suite de cet article sʼoriente sur la détermination des pertes de charge au travers du système dʼinjection, fortement dépendantes de paramètres tels que la résolution du maillage, le traitement des parois et le code. Deux approches numériques sont disponibles, soit le choix de résoudre entièrement lʼécoulement, soit dʼutiliser une loi de paroi. Les résultats montrent que pour des écoulements à nombres de Reynolds élevés, la loi de paroi fournit de meilleures prédictions en réduisant lʼerreur par rapport aux résultats expérimentaux avec un coût global de calcul raisonnable.

Published online:
DOI: 10.1016/j.crme.2012.11.010
Keywords: Large-Eddy Simulation, Wall treatment, Pressure drop
Keywords: Simulation aux Grandes Échelles, Traitement des parois, Perte de charge

David Barré 1; Matthias Kraushaar 1; Gabriel Staffelbach 1; Vincent Moureau 2; Laurent Y.M. Gicquel 1

1 CERFACS, 42, avenue G. Coriolis, 31057 Toulouse cedex 01, France
2 CORIA, campus du Madrillet, 76801 St Etienne du Rouvray, France
@article{CRMECA_2013__341_1-2_277_0,
     author = {David Barr\'e and Matthias Kraushaar and Gabriel Staffelbach and Vincent Moureau and Laurent Y.M. Gicquel},
     title = {Compressible and low {Mach} number {LES} of a swirl experimental burner},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {277--287},
     publisher = {Elsevier},
     volume = {341},
     number = {1-2},
     year = {2013},
     doi = {10.1016/j.crme.2012.11.010},
     language = {en},
}
TY  - JOUR
AU  - David Barré
AU  - Matthias Kraushaar
AU  - Gabriel Staffelbach
AU  - Vincent Moureau
AU  - Laurent Y.M. Gicquel
TI  - Compressible and low Mach number LES of a swirl experimental burner
JO  - Comptes Rendus. Mécanique
PY  - 2013
SP  - 277
EP  - 287
VL  - 341
IS  - 1-2
PB  - Elsevier
DO  - 10.1016/j.crme.2012.11.010
LA  - en
ID  - CRMECA_2013__341_1-2_277_0
ER  - 
%0 Journal Article
%A David Barré
%A Matthias Kraushaar
%A Gabriel Staffelbach
%A Vincent Moureau
%A Laurent Y.M. Gicquel
%T Compressible and low Mach number LES of a swirl experimental burner
%J Comptes Rendus. Mécanique
%D 2013
%P 277-287
%V 341
%N 1-2
%I Elsevier
%R 10.1016/j.crme.2012.11.010
%G en
%F CRMECA_2013__341_1-2_277_0
David Barré; Matthias Kraushaar; Gabriel Staffelbach; Vincent Moureau; Laurent Y.M. Gicquel. Compressible and low Mach number LES of a swirl experimental burner. Comptes Rendus. Mécanique, Volume 341 (2013) no. 1-2, pp. 277-287. doi : 10.1016/j.crme.2012.11.010. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2012.11.010/

[1] M. Rudgyard, Integrated preprocessing tools for unstructured parallel cfd applications, Technical report TR/CFD/95/08, CERFACS, 1995.

[2] R.-H. Ni A multiple grid scheme for solving the Euler equations, Am. Inst. Aeronaut. Astronaut. J., Volume 20 (1982), pp. 1565-1571

[3] G. Lartigue, Simulation aux grandes échelles de la combustion turbulente, PhD thesis, INP Toulouse, 2004.

[4] T. Poinsot; S. Lele Boundary conditions for direct simulations of compressible viscous flows, J. Comput. Phys., Volume 101 (1992) no. 1, pp. 104-129

[5] V. Moureau; G. Lartigue; Y. Sommerer; C. Angelberger; O. Colin; T. Poinsot Numerical methods for unsteady compressible multi-component reacting flows on fixed and moving grids, J. Comput. Phys., Volume 202 (2005) no. 2, pp. 710-736

[6] V. Moureau; P. Domingo; L. Vervisch Design of a massively parallel cfd code for complex geometries, C. R. Mécanique, Volume 339 (2011) no. 2–3, pp. 141-148

[7] V. Moureau www.coria-cfd.fr (YALES2 home page on)

[8] V. Moureau; P. Domingo; L. Vervisch From large-eddy simulation to direct numerical simulation of a lean premixed swirl flame: Filtered laminar flame-pdf modeling, Combust. Flame, Volume 158 (2011) no. 7, pp. 1340-1357

[9] J. Laufer, United States, National Advisory Committee for Aeronautics, The structure of turbulence in fully developed pipe flow, NACA, 1953.

[10] J. Weisbach Die Experimental-Hydraulik, Engelhardt, 1855

[11] O. Colin; M. Rudgyard Development of high-order Taylor–Galerkin schemes for unsteady calculations, J. Comput. Phys., Volume 162 (2000) no. 2, pp. 338-371

[12] L. Quartapelle; V. Selmin High-order Taylor–Galerkin methods for nonlinear multidimensional problems, Finite Elem. Fluids, Volume 76 (1993), p. 90

[13] J. Donea; A. Huerta Finite Element Methods for Flow Problems, Wiley, 2003

[14] F. Ducros, F. Nicoud, T. Poinsot, Wall-adapting local eddy-viscosity models for simulations in complex geometries, in: M.J. Baines (Ed.), Numerical Methods for Fluid Dynamics VI, 1998, pp. 293–299.

[15] Laura L. Pauley; Parviz Moin; William C. Reynolds The structure of two-dimensional separation, J. Fluid Mech. (1990), pp. 397-411

[16] A.J. Chorin Numerical solution of the Navier–Stokes equations, Math. Comput., Volume 22 (1968) no. 104, pp. 745-762

[17] M. Kraushaar, Application of the compressible and low-Mach number approaches to Large-Eddy Simulation of turbulent flows in aero-engines, PhD thesis, Université de Toulouse, 2011.

[18] M. Germano; U. Piomelli; P. Moin; W.H. Cabot A dynamic subgrid-scale eddy viscosity model, Phys. Fluids A Fluid Dyn., Volume 3 (1991) no. 7, pp. 1760-1765

[19] J. Jimenez; P. Moin The minimal flow unit in near-wall turbulence, J. Fluid Mech., Volume 225 (1991) no. 213–240

[20] J. Kim; P. Moin; R. Moser Turbulence statistics in fully developed channel flow at low Reynolds number, J. Fluid Mech., Volume 177 (1987), pp. 133-166

[21] U. Piomelli; E. Balaras; H. Pasinato; K.D. Squires; P.R. Spalart The inner–outer layer interface in large-Eddy simulations with wall-layer models, Int. J. Heat Fluid Flow, Volume 24 ( August 2003 ) no. 4, pp. 538-550

[22] F. Jaegle; O. Cabrit; S. Mendez; T. Poinsot Implementation methods of wall functions in cell-vertex numerical solvers, Flow Turbul. Combust., Volume 85 (2010) no. 2, pp. 245-272

[23] M. Wang; P. Moin Computation of trailing-edge flow and noise using large-Eddy simulation, Am. Inst. Aeronaut. Astronaut. J., Volume 38 (2012) no. 12

[24] J.A. Templeton; G. Medic; G. Kalitzin An eddy-viscosity based near-wall treatment for coarse grid large-Eddy simulation, Phys. Fluids, Volume 17 (2005), p. 105101

[25] S. Bocquet; P. Sagaut; J. Jouhaud A compressible wall model for large-Eddy simulation with application to prediction of aerothermal quantities, Phys. Fluids, Volume 24 (2012), p. 065103

[26] J.P. Frenillot, Etude phénoménologique des processus dʼallumage et de stabilisation dans les chambres de combustion turbulente swirlées, PhD thesis, CORIA, 2011.

Cited by Sources:

Comments - Policy