Comptes Rendus
Non-linear creep modeling of short-fiber composites using Hermite polynomials, hyperbolic trigonometric functions and power series
Comptes Rendus. Mécanique, Volume 341 (2013) no. 7, pp. 592-604.

A novel analytical model is presented for analyzing the steady-state creep in short-fiber composites under axial load utilizing the previous shear-lag theory, the imaginary fiber technique and also new approaches of Hermite polynomials, hyperbolic trigonometric functions and power series. The steady-state creep behavior of the matrix is described by an exponential law, while the fibers behave elastically. In this model, in spite of the previous researches, some unknowns such as shear stress, displacement rates, and creep strain rates are correctly determined in all regions of the unit cell without using any further assumptions. In comparison with previous analytical approaches, the results of the present work are closer to the FEM simulations. This strong method can be used in various problems in applied physics and mechanics such as elastic and plastic analysis of nano-composites.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crme.2013.04.004
Mots clés : Steady-state creep, Short-fiber composite, Hermite polynomials, Hyperbolic trigonometric functions, Power series, FEM
Mehdi Mondali 1 ; Vahid Monfared 2 ; Ali Abedian 3

1 Department of Mechanical and Aerospace Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
2 Department of Mechanical Engineering, Zanjan Branch, Islamic Azad University, Zanjan, Iran
3 Department of Aerospace Engineering, Sharif University of Technology, Tehran, Iran
@article{CRMECA_2013__341_7_592_0,
     author = {Mehdi Mondali and Vahid Monfared and Ali Abedian},
     title = {Non-linear creep modeling of short-fiber composites using {Hermite} polynomials, hyperbolic trigonometric functions and power series},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {592--604},
     publisher = {Elsevier},
     volume = {341},
     number = {7},
     year = {2013},
     doi = {10.1016/j.crme.2013.04.004},
     language = {en},
}
TY  - JOUR
AU  - Mehdi Mondali
AU  - Vahid Monfared
AU  - Ali Abedian
TI  - Non-linear creep modeling of short-fiber composites using Hermite polynomials, hyperbolic trigonometric functions and power series
JO  - Comptes Rendus. Mécanique
PY  - 2013
SP  - 592
EP  - 604
VL  - 341
IS  - 7
PB  - Elsevier
DO  - 10.1016/j.crme.2013.04.004
LA  - en
ID  - CRMECA_2013__341_7_592_0
ER  - 
%0 Journal Article
%A Mehdi Mondali
%A Vahid Monfared
%A Ali Abedian
%T Non-linear creep modeling of short-fiber composites using Hermite polynomials, hyperbolic trigonometric functions and power series
%J Comptes Rendus. Mécanique
%D 2013
%P 592-604
%V 341
%N 7
%I Elsevier
%R 10.1016/j.crme.2013.04.004
%G en
%F CRMECA_2013__341_7_592_0
Mehdi Mondali; Vahid Monfared; Ali Abedian. Non-linear creep modeling of short-fiber composites using Hermite polynomials, hyperbolic trigonometric functions and power series. Comptes Rendus. Mécanique, Volume 341 (2013) no. 7, pp. 592-604. doi : 10.1016/j.crme.2013.04.004. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2013.04.004/

[1] H.L. Cox The elasticity and strength of paper and other fibrous materials, Brit. J. Appl. Phys., Volume 3 (1952), pp. 72-79

[2] A. Kelly; K.N. Street Creep of discontinuous fibre composites. II. Theory for the steady-state, Proc. R. Soc. A, Volume 328 (1972) no. 1573, pp. 283-293

[3] C.H. Hsueh; R.J. Young; X. Yang; P.F. Becher Stress transfer in a model composite containing a single embedded fiber, Acta Mater., Volume 45 (1997) no. 4, pp. 1469-1476

[4] X.L. Gao; K. Li A shear-lag for carbon nanotube-reinforced polymer composites, Int. J. Solids Struct., Volume 42 (2005), pp. 1649-1667

[5] A. Abedian; M. Mondali; M. Pahlavanpour Basic modifications in 3D micromechanical modeling of short fiber composites with bonded and debonded fiber end, Comput. Mater. Sci., Volume 40 (2007), pp. 421-433

[6] M. Mondali; A. Abedian; A. Ghavami A new analytical shear-lag based model for prediction of the steady-state creep deformations of some short-fiber composites, Mater. Design, Volume 30 (2009), pp. 1075-1084

[7] Y.R. Wang; T.W. Chou Analytical modeling of creep behavior of short fiber reinforced ceramic matrix composites, J. Compos. Mater., Volume 26 (1992) no. 9, pp. 1269-1286

[8] Z. Jiang; X. Liu; G. Li; J. Lian A new analytical model for three-dimensional elastic stress field distribution in short fibre composite, Mater. Sci. Eng. A, Volume 366 (2004), pp. 381-396

[9] I. Berman; D.H. Pai A theory of anisotropic steady-state creep, Int. J. Mech. Sci., Volume 8 (1966) no. 5, pp. 341-352

[10] A.R.T. De Silva A theoretical analysis of creep in fiber reinforced composites, J. Mech. Phys. Solids, Volume 16 (1968) no. 3, pp. 169-186

[11] N. Laws; R. McLaughlin Self-consistent estimates for the viscoelastic creep compliances of composite materials, Proc. R. Soc. A, Volume 359 (1978) no. 1697, pp. 251-273

[12] B.K. Min; F.W. Crossman Analysis of creep for metal matrix composites, J. Compos. Mater., Volume 16 (1982) no. 3, pp. 188-203

[13] I. Chung; C.T. Sun; I.Y. Chang Modeling creep in thermoplastic composites, J. Compos. Mater., Volume 27 (1993) no. 10, pp. 1009-1029

[14] G. DeBotton; P. Ponte Castaneda Variational estimates for the creep behaviour of polycrystals, Proc. R. Soc. A, Volume 448 (1995) no. 1932, pp. 121-142

[15] V. Monfared; M. Mondali; A. Abedian Steady-state creep analysis of polymer matrix composites using complex variable method, J. Mech. Eng. Sci. (2013) (in press) | DOI

[16] V. Monfared; M. Mondali; A. Abedian Steady-state creep behavior of short-fiber composites by mapping, logarithmic functions (MF) and dimensionless parameter (DP) techniques, Arch. Civ. Mech. Eng., Volume 12 (2012) no. 4, pp. 455-463

[17] A. Kelly; K.N. Street Creep of discontinuous fibre composites. I. Experimental behaviour of lead-phosphor bronze, Proc. R. Soc. A, Volume 328 (1972) no. 1573, pp. 267-282

[18] R.H. Ericksen Room temperature creep of Kevlar 49/epoxy composites, Composites, Volume 7 (1976) no. 3, pp. 189-194

[19] T.G. Nieh Creep rupture of a silicon-carbide reinforced aluminum composite, Metall. Trans. A, Volume 15 (1984), pp. 139-146

[20] T. Morimoto; T. Yamaoka; H. Lilholt; M. Taya Second stage creep of silicon carbide whisker/6061 aluminum composite at 573 K, J. Eng. Mater. Technol., Volume 110 (1988), pp. 70-76

[21] R.B. Bhagat; M.F. Amateau; M.B. House; K.C. Meinert; P. Nisson Elevated temperature strength, aging response and creep of aluminum matrix composites, J. Compos. Mater., Volume 26 (1992) no. 11, pp. 1578-1593

[22] R. Fernandez; G. Gonzalez-Doncel Threshold stress and load partitioning during creep of metal matrix composites, Acta Mater., Volume 56 (2008), pp. 2549-2562

[23] A. Boubakri; N. Haddar; K. Elleuch; Y. Bienvenu Influence of thermal aging on tensile and creep behavior of thermoplastic polyurethane, C. R. Mecanique, Volume 339 (2011) no. 10, pp. 666-673

[24] T.L. Dragon; W.D. Nix Geometric factors affecting the internal stress distribution and high temperature creep rate of discontinuous fiber reinforced metals, Acta Metall. Mater., Volume 38 (1990) no. 10, pp. 1941-1953

[25] Y.H. Park; J.W. Holmes Finite element modeling of creep deformation in fibre-reinforced ceramic composites, J. Mater. Sci., Volume 27 (1992) no. 23, pp. 6341-6351

[26] Y. Zhu-feng Statistic modeling of the creep behavior of metal matrix composites based on finite element analysis, Appl. Math. Mech., Volume 23 (2002) no. 4, pp. 421-434

[27] Z.F. Yue; Z.Z. Lu A numerical determination of the fiber/matrix interlayer creep properties from the indentation creep testing in fiber reinforced composites, Mater. Sci. Eng. A, Volume 352 (2003) no. 1–2, pp. 266-272

[28] M. Mondali; A. Abedian; S. Adibnazari FEM study of the second stage creep behavior of Al6061/SiC metal matrix composite, Comput. Mater. Sci., Volume 34 (2005), pp. 140-150

[29] A. Ghavami; A. Abedian; M. Mondali Finite difference solution of steady-state creep deformations in a short fiber composite in presence of fiber/matrix debonding, Mater. Design, Volume 31 (2010), pp. 2616-2624

[30] J.T. Boyle; J. Spence Stress Analysis for Creep, Butterworth–Heinemann, Butterworth, Southampton, UK, 1983

[31] J. Lubliner Plasticity Theory, Dover Publications, United States, 2008

Cité par Sources :

Commentaires - Politique


Ces articles pourraient vous intéresser

Monitoring active fault creep as a tool in seismic hazard mitigation. Insights from creepmeter study at Chihshang, Taiwan

Jian-Cheng Lee; Jacques Angelier; Hao-Tsu Chu; ...

C. R. Géos (2005)


Analytical study of the post-closure behaviour of a deep tunnel in a porous creeping rock mass

Frédéric Deleruyelle; Tuan Anh Bui; Henry Wong; ...

C. R. Méca (2016)


Structural properties of solid foams

Pierre Lhuissier

C. R. Phys (2014)