A novel analytical model is presented for analyzing the steady-state creep in short-fiber composites under axial load utilizing the previous shear-lag theory, the imaginary fiber technique and also new approaches of Hermite polynomials, hyperbolic trigonometric functions and power series. The steady-state creep behavior of the matrix is described by an exponential law, while the fibers behave elastically. In this model, in spite of the previous researches, some unknowns such as shear stress, displacement rates, and creep strain rates are correctly determined in all regions of the unit cell without using any further assumptions. In comparison with previous analytical approaches, the results of the present work are closer to the FEM simulations. This strong method can be used in various problems in applied physics and mechanics such as elastic and plastic analysis of nano-composites.
Accepted:
Published online:
Mehdi Mondali 1; Vahid Monfared 2; Ali Abedian 3
@article{CRMECA_2013__341_7_592_0, author = {Mehdi Mondali and Vahid Monfared and Ali Abedian}, title = {Non-linear creep modeling of short-fiber composites using {Hermite} polynomials, hyperbolic trigonometric functions and power series}, journal = {Comptes Rendus. M\'ecanique}, pages = {592--604}, publisher = {Elsevier}, volume = {341}, number = {7}, year = {2013}, doi = {10.1016/j.crme.2013.04.004}, language = {en}, }
TY - JOUR AU - Mehdi Mondali AU - Vahid Monfared AU - Ali Abedian TI - Non-linear creep modeling of short-fiber composites using Hermite polynomials, hyperbolic trigonometric functions and power series JO - Comptes Rendus. Mécanique PY - 2013 SP - 592 EP - 604 VL - 341 IS - 7 PB - Elsevier DO - 10.1016/j.crme.2013.04.004 LA - en ID - CRMECA_2013__341_7_592_0 ER -
%0 Journal Article %A Mehdi Mondali %A Vahid Monfared %A Ali Abedian %T Non-linear creep modeling of short-fiber composites using Hermite polynomials, hyperbolic trigonometric functions and power series %J Comptes Rendus. Mécanique %D 2013 %P 592-604 %V 341 %N 7 %I Elsevier %R 10.1016/j.crme.2013.04.004 %G en %F CRMECA_2013__341_7_592_0
Mehdi Mondali; Vahid Monfared; Ali Abedian. Non-linear creep modeling of short-fiber composites using Hermite polynomials, hyperbolic trigonometric functions and power series. Comptes Rendus. Mécanique, Volume 341 (2013) no. 7, pp. 592-604. doi : 10.1016/j.crme.2013.04.004. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2013.04.004/
[1] The elasticity and strength of paper and other fibrous materials, Brit. J. Appl. Phys., Volume 3 (1952), pp. 72-79
[2] Creep of discontinuous fibre composites. II. Theory for the steady-state, Proc. R. Soc. A, Volume 328 (1972) no. 1573, pp. 283-293
[3] Stress transfer in a model composite containing a single embedded fiber, Acta Mater., Volume 45 (1997) no. 4, pp. 1469-1476
[4] A shear-lag for carbon nanotube-reinforced polymer composites, Int. J. Solids Struct., Volume 42 (2005), pp. 1649-1667
[5] Basic modifications in 3D micromechanical modeling of short fiber composites with bonded and debonded fiber end, Comput. Mater. Sci., Volume 40 (2007), pp. 421-433
[6] A new analytical shear-lag based model for prediction of the steady-state creep deformations of some short-fiber composites, Mater. Design, Volume 30 (2009), pp. 1075-1084
[7] Analytical modeling of creep behavior of short fiber reinforced ceramic matrix composites, J. Compos. Mater., Volume 26 (1992) no. 9, pp. 1269-1286
[8] A new analytical model for three-dimensional elastic stress field distribution in short fibre composite, Mater. Sci. Eng. A, Volume 366 (2004), pp. 381-396
[9] A theory of anisotropic steady-state creep, Int. J. Mech. Sci., Volume 8 (1966) no. 5, pp. 341-352
[10] A theoretical analysis of creep in fiber reinforced composites, J. Mech. Phys. Solids, Volume 16 (1968) no. 3, pp. 169-186
[11] Self-consistent estimates for the viscoelastic creep compliances of composite materials, Proc. R. Soc. A, Volume 359 (1978) no. 1697, pp. 251-273
[12] Analysis of creep for metal matrix composites, J. Compos. Mater., Volume 16 (1982) no. 3, pp. 188-203
[13] Modeling creep in thermoplastic composites, J. Compos. Mater., Volume 27 (1993) no. 10, pp. 1009-1029
[14] Variational estimates for the creep behaviour of polycrystals, Proc. R. Soc. A, Volume 448 (1995) no. 1932, pp. 121-142
[15] Steady-state creep analysis of polymer matrix composites using complex variable method, J. Mech. Eng. Sci. (2013) (in press) | DOI
[16] Steady-state creep behavior of short-fiber composites by mapping, logarithmic functions (MF) and dimensionless parameter (DP) techniques, Arch. Civ. Mech. Eng., Volume 12 (2012) no. 4, pp. 455-463
[17] Creep of discontinuous fibre composites. I. Experimental behaviour of lead-phosphor bronze, Proc. R. Soc. A, Volume 328 (1972) no. 1573, pp. 267-282
[18] Room temperature creep of Kevlar 49/epoxy composites, Composites, Volume 7 (1976) no. 3, pp. 189-194
[19] Creep rupture of a silicon-carbide reinforced aluminum composite, Metall. Trans. A, Volume 15 (1984), pp. 139-146
[20] Second stage creep of silicon carbide whisker/6061 aluminum composite at 573 K, J. Eng. Mater. Technol., Volume 110 (1988), pp. 70-76
[21] Elevated temperature strength, aging response and creep of aluminum matrix composites, J. Compos. Mater., Volume 26 (1992) no. 11, pp. 1578-1593
[22] Threshold stress and load partitioning during creep of metal matrix composites, Acta Mater., Volume 56 (2008), pp. 2549-2562
[23] Influence of thermal aging on tensile and creep behavior of thermoplastic polyurethane, C. R. Mecanique, Volume 339 (2011) no. 10, pp. 666-673
[24] Geometric factors affecting the internal stress distribution and high temperature creep rate of discontinuous fiber reinforced metals, Acta Metall. Mater., Volume 38 (1990) no. 10, pp. 1941-1953
[25] Finite element modeling of creep deformation in fibre-reinforced ceramic composites, J. Mater. Sci., Volume 27 (1992) no. 23, pp. 6341-6351
[26] Statistic modeling of the creep behavior of metal matrix composites based on finite element analysis, Appl. Math. Mech., Volume 23 (2002) no. 4, pp. 421-434
[27] A numerical determination of the fiber/matrix interlayer creep properties from the indentation creep testing in fiber reinforced composites, Mater. Sci. Eng. A, Volume 352 (2003) no. 1–2, pp. 266-272
[28] FEM study of the second stage creep behavior of Al6061/SiC metal matrix composite, Comput. Mater. Sci., Volume 34 (2005), pp. 140-150
[29] Finite difference solution of steady-state creep deformations in a short fiber composite in presence of fiber/matrix debonding, Mater. Design, Volume 31 (2010), pp. 2616-2624
[30] Stress Analysis for Creep, Butterworth–Heinemann, Butterworth, Southampton, UK, 1983
[31] Plasticity Theory, Dover Publications, United States, 2008
Cited by Sources:
Comments - Policy