Comptes Rendus
Effects of rough boundary on the heat transfer in a thin-film flow
Comptes Rendus. Mécanique, Volume 341 (2013) no. 8, pp. 646-652.

In this Note, a heat flow through a rough thin domain filled with fluid (lubricant) is studied. The domainʼs thickness is considered as the small parameter ε, while the roughness is defined by a periodical function with a period of order ε2. We assume that the lubricant is cooled by the exterior medium and we describe the heat exchange on the rough part of the boundary by Newtonʼs cooling law. Depending on the magnitude of the heat transfer coefficient with respect to ε, we obtain three different macroscopic models via formal asymptotic analysis. We identify the critical case explicitly acknowledging both roughness-induced effects and the effects of the surrounding medium on heat transfer at main order. We illustrate the obtained results by some numerical simulations.

Dans cette Note, on étudie un flux de chaleur dans un domaine rugueux de faible épaisseur rempli de liquide (lubrifiant). On considère lʼépaisseur du domaine comme le petit paramètre ε, tandis que la rugosité est définie par une fonction périodique de période dʼordre ε2. On suppose que le lubrifiant est refroidi par le milieu extérieur et que lʼéchange de chaleur est décrit sur la partie rugueuse de la frontière par la loi de refroidissement de Newton. En fonction de la valeur du coefficient de transfert de chaleur par rapport à ε, on obtient trois différents modèles macroscopiques via une analyse asymptotique formelle. On identifie le cas critique, reconnaissant explicitement les effets induits par la rugosité et les effets du milieu environnant sur le transfert de chaleur à lʼordre principal. Les résultats obtenus sont illustrés à lʼaide de simulations numériques.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crme.2013.05.001
Keywords: Thin-film lubrication, Heat conduction, Rough boundaries, Asymptotic analysis
Mot clés : Film fluide mince, Conduction de chaleur, Surfaces rugueuses, Analyse asymptotique

Igor Pažanin 1; Francisco Javier Suárez-Grau 2

1 Department of Mathematics, Faculty of Science, University of Zagreb, Bijenička 30, 10000 Zagreb, Croatia
2 Departamento de Ecuaciones Diferenciales y Análisis Numérico, Universidad de Sevilla, C/ Tarfia s/n, 41012 Sevilla, Spain
@article{CRMECA_2013__341_8_646_0,
     author = {Igor Pa\v{z}anin and Francisco Javier Su\'arez-Grau},
     title = {Effects of rough boundary on the heat transfer in a thin-film flow},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {646--652},
     publisher = {Elsevier},
     volume = {341},
     number = {8},
     year = {2013},
     doi = {10.1016/j.crme.2013.05.001},
     language = {en},
}
TY  - JOUR
AU  - Igor Pažanin
AU  - Francisco Javier Suárez-Grau
TI  - Effects of rough boundary on the heat transfer in a thin-film flow
JO  - Comptes Rendus. Mécanique
PY  - 2013
SP  - 646
EP  - 652
VL  - 341
IS  - 8
PB  - Elsevier
DO  - 10.1016/j.crme.2013.05.001
LA  - en
ID  - CRMECA_2013__341_8_646_0
ER  - 
%0 Journal Article
%A Igor Pažanin
%A Francisco Javier Suárez-Grau
%T Effects of rough boundary on the heat transfer in a thin-film flow
%J Comptes Rendus. Mécanique
%D 2013
%P 646-652
%V 341
%N 8
%I Elsevier
%R 10.1016/j.crme.2013.05.001
%G en
%F CRMECA_2013__341_8_646_0
Igor Pažanin; Francisco Javier Suárez-Grau. Effects of rough boundary on the heat transfer in a thin-film flow. Comptes Rendus. Mécanique, Volume 341 (2013) no. 8, pp. 646-652. doi : 10.1016/j.crme.2013.05.001. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2013.05.001/

[1] O. Reynolds On the theory of lubrication and its applications to Mr. Beauchamp Towers experiments, including an experimental determination of the viscosity of olive oil, Philos. Trans. Roy. Soc. London, Volume 177 (1886), pp. 157-234

[2] G.H. Wannier A contribution to the hydrodynamics of lubrication, Quart. Appl. Math., Volume 8 (1950), pp. 1-32

[3] H.G. Elrod A derivation of the basic equations for hydrodynamics lubrication with a fluid having constant properties, Quart. Appl. Math., Volume 17 (1960), pp. 349-359

[4] G. Bayada; M. Chambat The transition between the Stokes equations and the Reynolds equation: a mathematical proof, Appl. Math. Opt., Volume 14 (1986), pp. 73-93

[5] S. Marušić; E. Marušić-Paloka Two-scale convergence for thin domains and its applications to some lower-dimensional models in fluid mechanics, Asymptot. Anal., Volume 23 (2000), pp. 23-58

[6] J. Wilkening Practical error estimates for Reynoldsʼ lubrication approximation and its higher order corrections, SIAM J. Math. Anal., Volume 41 (2009), pp. 588-630

[7] E. Marušić-Paloka; I. Pažanin; S. Marušić Second order model in fluid film lubrication, C. R. Mecanique, Volume 340 (2012), pp. 596-601

[8] A. Dyson Hydrodynamic lubrication of rough surface – a review work, Proceedings of the 4th Leeds–Lyon Symposium on Surfaces Roughness on Lubrication, 1977, pp. 61-69

[9] G. Bayada; M. Chambat New models in the theory of the hydrodynamic lubrication of rough surfaces, J. Tribol., Volume 110 (1988), pp. 402-407

[10] N. Benhaboucha; M. Chambat; I. Ciuperca Asymptotic behaviour of pressure and stresses in a thin film flow with a rough boundary, Quart. Appl. Math., Volume 63 (2005), pp. 369-400

[11] D. Bresch; C. Choquet; L. Chupin; T. Colin; M. Gisclon Roughness-induced effect at main order on the Reynolds approximation, SIAM Multiscale Model. Simul., Volume 8 (2010), pp. 997-1017

[12] J.-L. Ligier Lubrification des paliers moteurs, Technip, 1997

[13] L. Chupin; S. Martin Rigorous derivation of the thin film approximation with roughness-induced correctors, SIAM J. Math. Anal., Volume 44 (2012), pp. 3041-3070

[14] C. Choquet, L. Chupin, M. Gisclon, Convergence to the Reynolds approximation with a double effect of roughness, preprint.

[15] J. Casado-Diáz; M. Luna-Laynez; F.J. Suárez-Grau Asymptotic behavior of a viscous fluid with slip boundary conditions on a slightly rough wall, Math. Mod. Meth. Appl. Sci., Volume 20 (2010), pp. 121-156

[16] J.M. Arrieta; M.C. Pereira Homogenization in a thin domain with an oscillatory boundary, J. Math. Pures Appl., Volume 96 (2011), pp. 29-57

[17] L. Chupin Roughness effect on Neumann boundary condition, Asymptot. Anal., Volume 78 (2012), pp. 85-121

[18] M.C. Pereira, R.P. Silva, Error estimates and homogenization for a Neumann problem in highly oscillating thin domains, preprint.

[19] L. Landau; E. Lifchitz Physique théorique : Mécanique des fluides, Ellipses, Paris, 1994

[20] C. Bernardi; B. Métivet; B. Pernaud-Thomas Couplage des équations de Navier–Stokes et de la chaleur : le modèle et son approximation par éléments finis, Math. Mod. Numer. Anal., Volume 29 (1995) no. 7, pp. 871-921

[21] E. Marušić-Paloka; I. Pažanin Non-isothermal fluid flow through a thin pipe with cooling, Appl. Anal., Volume 88 (2009), pp. 495-515

[22] E. Marušić-Paloka; I. Pažanin On the effects of curved geometry on heat conduction through a distorted pipe, Nonlinear Anal. RWA, Volume 11 (2010), pp. 4554-4564

[23] G. Allaire Homogenization and two-scale convergence, SIAM J. Math. Anal., Volume 23 (1992), pp. 1482-1518

Cited by Sources:

Comments - Policy