In this Note, a heat flow through a rough thin domain filled with fluid (lubricant) is studied. The domainʼs thickness is considered as the small parameter ε, while the roughness is defined by a periodical function with a period of order . We assume that the lubricant is cooled by the exterior medium and we describe the heat exchange on the rough part of the boundary by Newtonʼs cooling law. Depending on the magnitude of the heat transfer coefficient with respect to ε, we obtain three different macroscopic models via formal asymptotic analysis. We identify the critical case explicitly acknowledging both roughness-induced effects and the effects of the surrounding medium on heat transfer at main order. We illustrate the obtained results by some numerical simulations.
Dans cette Note, on étudie un flux de chaleur dans un domaine rugueux de faible épaisseur rempli de liquide (lubrifiant). On considère lʼépaisseur du domaine comme le petit paramètre ε, tandis que la rugosité est définie par une fonction périodique de période dʼordre . On suppose que le lubrifiant est refroidi par le milieu extérieur et que lʼéchange de chaleur est décrit sur la partie rugueuse de la frontière par la loi de refroidissement de Newton. En fonction de la valeur du coefficient de transfert de chaleur par rapport à ε, on obtient trois différents modèles macroscopiques via une analyse asymptotique formelle. On identifie le cas critique, reconnaissant explicitement les effets induits par la rugosité et les effets du milieu environnant sur le transfert de chaleur à lʼordre principal. Les résultats obtenus sont illustrés à lʼaide de simulations numériques.
Accepted:
Published online:
Mots-clés : Film fluide mince, Conduction de chaleur, Surfaces rugueuses, Analyse asymptotique
Igor Pažanin 1; Francisco Javier Suárez-Grau 2
@article{CRMECA_2013__341_8_646_0, author = {Igor Pa\v{z}anin and Francisco Javier Su\'arez-Grau}, title = {Effects of rough boundary on the heat transfer in a thin-film flow}, journal = {Comptes Rendus. M\'ecanique}, pages = {646--652}, publisher = {Elsevier}, volume = {341}, number = {8}, year = {2013}, doi = {10.1016/j.crme.2013.05.001}, language = {en}, }
Igor Pažanin; Francisco Javier Suárez-Grau. Effects of rough boundary on the heat transfer in a thin-film flow. Comptes Rendus. Mécanique, Volume 341 (2013) no. 8, pp. 646-652. doi : 10.1016/j.crme.2013.05.001. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2013.05.001/
[1] On the theory of lubrication and its applications to Mr. Beauchamp Towers experiments, including an experimental determination of the viscosity of olive oil, Philos. Trans. Roy. Soc. London, Volume 177 (1886), pp. 157-234
[2] A contribution to the hydrodynamics of lubrication, Quart. Appl. Math., Volume 8 (1950), pp. 1-32
[3] A derivation of the basic equations for hydrodynamics lubrication with a fluid having constant properties, Quart. Appl. Math., Volume 17 (1960), pp. 349-359
[4] The transition between the Stokes equations and the Reynolds equation: a mathematical proof, Appl. Math. Opt., Volume 14 (1986), pp. 73-93
[5] Two-scale convergence for thin domains and its applications to some lower-dimensional models in fluid mechanics, Asymptot. Anal., Volume 23 (2000), pp. 23-58
[6] Practical error estimates for Reynoldsʼ lubrication approximation and its higher order corrections, SIAM J. Math. Anal., Volume 41 (2009), pp. 588-630
[7] Second order model in fluid film lubrication, C. R. Mecanique, Volume 340 (2012), pp. 596-601
[8] Hydrodynamic lubrication of rough surface – a review work, Proceedings of the 4th Leeds–Lyon Symposium on Surfaces Roughness on Lubrication, 1977, pp. 61-69
[9] New models in the theory of the hydrodynamic lubrication of rough surfaces, J. Tribol., Volume 110 (1988), pp. 402-407
[10] Asymptotic behaviour of pressure and stresses in a thin film flow with a rough boundary, Quart. Appl. Math., Volume 63 (2005), pp. 369-400
[11] Roughness-induced effect at main order on the Reynolds approximation, SIAM Multiscale Model. Simul., Volume 8 (2010), pp. 997-1017
[12] Lubrification des paliers moteurs, Technip, 1997
[13] Rigorous derivation of the thin film approximation with roughness-induced correctors, SIAM J. Math. Anal., Volume 44 (2012), pp. 3041-3070
[14] C. Choquet, L. Chupin, M. Gisclon, Convergence to the Reynolds approximation with a double effect of roughness, preprint.
[15] Asymptotic behavior of a viscous fluid with slip boundary conditions on a slightly rough wall, Math. Mod. Meth. Appl. Sci., Volume 20 (2010), pp. 121-156
[16] Homogenization in a thin domain with an oscillatory boundary, J. Math. Pures Appl., Volume 96 (2011), pp. 29-57
[17] Roughness effect on Neumann boundary condition, Asymptot. Anal., Volume 78 (2012), pp. 85-121
[18] M.C. Pereira, R.P. Silva, Error estimates and homogenization for a Neumann problem in highly oscillating thin domains, preprint.
[19] Physique théorique : Mécanique des fluides, Ellipses, Paris, 1994
[20] Couplage des équations de Navier–Stokes et de la chaleur : le modèle et son approximation par éléments finis, Math. Mod. Numer. Anal., Volume 29 (1995) no. 7, pp. 871-921
[21] Non-isothermal fluid flow through a thin pipe with cooling, Appl. Anal., Volume 88 (2009), pp. 495-515
[22] On the effects of curved geometry on heat conduction through a distorted pipe, Nonlinear Anal. RWA, Volume 11 (2010), pp. 4554-4564
[23] Homogenization and two-scale convergence, SIAM J. Math. Anal., Volume 23 (1992), pp. 1482-1518
Cited by Sources:
Comments - Policy