Comptes Rendus
Love–Bishop rod solution based on strain gradient elasticity theory
Comptes Rendus. Mécanique, Volume 342 (2014) no. 1, pp. 8-16.

In the present work, the propagation of longitudinal stress waves is investigated with a strain gradient elasticity theory given by Lam et al. In principle, the analysis of wave motion is based on the Love rod model including the lateral deformation effects, but in the same time is also taken into account the shear strain effects with Bishopʼs correction. By applying Hamiltonʼs principle, a general explicit strain gradient elasticity solution is developed for the longitudinal stress waves, and it is compared with the special solutions based on the modified couple stress and classical theories. This work gives useful information with regard to the meaning of the three scale parameters in the strain gradient elasticity theory used here.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crme.2013.10.011
Mots clés : Strain gradient elasticity, Longitudinal stress waves, Love rod model, Bishop correction, Hamiltonʼs principle
Uğur Güven 1

1 Department of Mechanical Engineering, Yildiz Technical University, 34349 Besiktas, Istanbul, Turkey
@article{CRMECA_2014__342_1_8_0,
     author = {U\u{g}ur G\"uven},
     title = {Love{\textendash}Bishop rod solution based on strain gradient elasticity theory},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {8--16},
     publisher = {Elsevier},
     volume = {342},
     number = {1},
     year = {2014},
     doi = {10.1016/j.crme.2013.10.011},
     language = {en},
}
TY  - JOUR
AU  - Uğur Güven
TI  - Love–Bishop rod solution based on strain gradient elasticity theory
JO  - Comptes Rendus. Mécanique
PY  - 2014
SP  - 8
EP  - 16
VL  - 342
IS  - 1
PB  - Elsevier
DO  - 10.1016/j.crme.2013.10.011
LA  - en
ID  - CRMECA_2014__342_1_8_0
ER  - 
%0 Journal Article
%A Uğur Güven
%T Love–Bishop rod solution based on strain gradient elasticity theory
%J Comptes Rendus. Mécanique
%D 2014
%P 8-16
%V 342
%N 1
%I Elsevier
%R 10.1016/j.crme.2013.10.011
%G en
%F CRMECA_2014__342_1_8_0
Uğur Güven. Love–Bishop rod solution based on strain gradient elasticity theory. Comptes Rendus. Mécanique, Volume 342 (2014) no. 1, pp. 8-16. doi : 10.1016/j.crme.2013.10.011. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2013.10.011/

[1] E. Cosserat; F. Cosserat Théorie des corps déformables, Hermann & Fils, Paris, 1909

[2] C. Truesdell; R.A. Toupin The Classical Field Theories, Handbuch der Physic, vol. III/1, Springer, Berlin, 1960

[3] R.D. Mindlin Second gradient of strain and surface tension in linear elasticity, Int. J. Solids Struct., Volume 1 (1965), pp. 417-438

[4] N.A. Fleck; J.W. Hutchinson Phenomenological theory for strain gradient effects in plasticity, J. Mech. Phys. Solids, Volume 41 (1993), pp. 1825-1857

[5] N.A. Fleck; J.W. Hutchinson Strain gradient plasticity, Adv. Appl. Mech., Volume 33 (1997), pp. 296-358

[6] N.A. Fleck; J.W. Hutchinson A reformulation of strain gradient plasticity, J. Mech. Phys. Solids, Volume 49 (2001), pp. 2245-2271

[7] D.C.C. Lam; F. Yang; A.C.M. Chong; J. Wang; P. Tong Experiments and theory in strain gradient elasticity, J. Mech. Phys. Solids, Volume 51 (2003), pp. 1477-1508

[8] S. Kong; S. Zhou; Z. Nie; K. Wang Static and dynamic analysis of micro-beams based on strain gradient elasticity theory, Int. J. Eng. Sci., Volume 47 (2009), pp. 487-498

[9] B. Wang; J. Zhao; S. Zhou A micro scale Timoshenko beam model based on strain gradient elasticity theory, Eur. J. Mech. A, Solids, Volume 29 (2010), pp. 837-843

[10] A. Akgoz; O. Civalek Strain gradient elasticity and modified couple stress models for buckling analysis of axially loaded micro-scaled beams, Int. J. Eng. Sci., Volume 49 (2011), pp. 1268-1280

[11] A. Akgoz; O. Civalek Application of strain gradient elasticity theory for buckling analysis of protein microtubules, Curr. Appl. Phys., Volume 11 (2011), pp. 1133-1138

[12] M.H. Kahrobaiyan; M. Asghari; M. Rahaeifard; M.T. Ahmadian A nonlinear strain gradient beam formulation, Int. J. Eng. Sci., Volume 49 (2011), pp. 1256-1267

[13] M.H. Kahrobaiyan; S.A. Tajalli; M.R. Movahhedy; J. Akbari; M.T. Ahmadian Torsion of strain gradient bars, Int. J. Eng. Sci., Volume 49 (2011), pp. 856-866

[14] B. Wang; S. Zhou; J. Zhao; X. Chen A size-dependent Kirchhoff micro-plate model based on strain gradient elasticity theory, Eur. J. Mech. A, Solids, Volume 30 (2011), pp. 517-524

[15] L. Yin; Q. Qian; L. Wang Strain gradient beam model for dynamics of micro scale pipes conveying fluid, Appl. Math. Model., Volume 35 (2011), pp. 2864-2873

[16] B. Akgoz; O. Civalek Longitudinal vibration analysis for microbars based on strain gradient elasticity theory, J. Vib. Contrl. (2013) (in press) | DOI

[17] A.E.H. Love A Treatise on the Mathematical Theory of Elasticity, Dover Publications, New York, 1944

[18] R.E.D. Bishop Longitudinal waves in beams, Aeronaut. Q., Volume 3 (1952), pp. 280-293

[19] S.S. Rao Vibration of Continuous Systems, Wiley, New Jersey, 2007

[20] W.W. Kecs A generalized equation of longitudinal vibrations for elastic rods. The solution and uniqueness of a boundary–initial value problem, Eur. J. Mech. A, Solids, Volume 13 (1994), pp. 135-145

[21] U. Güven The investigation of longitudinal stress waves with modified couple stress theory, Acta Mech., Volume 221 (2011), pp. 321-325

[22] U. Güven Two mode Mindlin–Herrmann rod solutions based on strain gradient elasticity theory, Z. Angew. Math. Mech. (2013) (in press) | DOI

[23] F. Yang; A.C.M. Chang; D.C.C. Lam; P. Tong Couple stress based strain gradient theory for elasticity, Int. J. Solids Struct., Volume 39 (2002), pp. 2731-2743

[24] W.J. Stronge Impact Mechanics, Cambridge University Press, Cambridge, 2000

[25] U. Güven A more general investigation for the longitudinal stress waves in microrods with initial stress, Acta Mech., Volume 223 (2012), pp. 2065-2074

[26] B.S. Altan; E.C. Aifantis On the structure of the mode III crack-tip in gradient elasticity, Scr. Metall. Mater., Volume 26 (1992), pp. 319-324

[27] C.Q. Ru; E.C. Aifantis A simple approach to solve boundary value problems in gradient elasticity, Acta Mech., Volume 101 (1993), pp. 59-68

[28] B.S. Altan; H.A. Evensen; E.C. Aifantis Longitudinal vibrations of a beam: a gradient elasticity approach, Mech. Res. Commun., Volume 23 (1996), pp. 35-40

[29] H. Askes; A.V. Metrikine; A.V. Pichugin; T. Bennett Four simplified gradient elasticity models for the simulation of dispersive wave propagation, Philos. Mag., Volume 88 (2008), pp. 3415-3443

Cité par Sources :

Commentaires - Politique


Ces articles pourraient vous intéresser

From Boussinesq–Love contact to impact between hyperelastic bodies

Zhi-Qiang Feng; Claude Vallée

C. R. Méca (2007)