We derive the integral fluctuation theorem around a nonequilibrium stationary state for frictionless and soft core granular particles under an external vibration achieved by a balance between an external vibration and inelastic collisions. We also derive the standard fluctuation theorem and the generalized Green–Kubo formula for this system.
Accepted:
Published online:
Hisao Hayakawa 1
@article{CRMECA_2014__342_1_17_0, author = {Hisao Hayakawa}, title = {Nonequilibrium identities of granular vibrating beds}, journal = {Comptes Rendus. M\'ecanique}, pages = {17--24}, publisher = {Elsevier}, volume = {342}, number = {1}, year = {2014}, doi = {10.1016/j.crme.2013.10.009}, language = {en}, }
Hisao Hayakawa. Nonequilibrium identities of granular vibrating beds. Comptes Rendus. Mécanique, Volume 342 (2014) no. 1, pp. 17-24. doi : 10.1016/j.crme.2013.10.009. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2013.10.009/
[1] Statistical Mechanics of Nonequilibrium Liquids, Cambridge University Press, Cambridge, 2008
[2] Application of transient correlation functions to shear flow far from equilibrium, Phys. Rev. A, Volume 35 (1987), pp. 792-797
[3] Probability of second law violations in shearing steady states, Phys. Rev. Lett., Volume 71 (1993), pp. 2401-2404
[4] Dynamical ensembles in nonequilibrium statistical mechanics, Phys. Rev. Lett., Volume 74 (1995), pp. 2694-2697
[5] Fluctuation theorem for stochastic dynamics, J. Phys. A: Math. Gen., Volume 31 (1998), pp. 3719-3729
[6] The fluctuation theorem, Adv. Phys., Volume 51 (2002), pp. 1529-1585
[7] Stochastic thermodynamics, fluctuation theorems and molecular machines, Rep. Prog. Phys., Volume 75 (2012), p. 126001 (58 p.)
[8] Nonequilibrium equality for free energy differences, Phys. Rev. Lett., Volume 78 (1997), pp. 2690-2693
[9] Path-ensemble averages in systems driven far from equilibrium, Phys. Rev. E, Volume 61 (2000), pp. 2361-2366
[10] Fluidized granular medium as an instance of the fluctuation theorem, Phys. Rev. Lett., Volume 92 (2004), p. 164301 (4 p.)
[11] Generalized Green–Kubo relation and integral fluctuation theorem for driven dissipative systems without microscopic time reversibility, Phys. Rev. E, Volume 81 (2010), p. 041130 (4 p.)
[12] Symmetry properties of the large-deviation function of the velocity of a self-propelled polar particle, Phys. Rev. Lett., Volume 106 (2011), p. 118001 (4 p.)
[13] Fluctuation theorems for an asymmetric rotor in a granular gas, Phys. Rev. Lett., Volume 108 (2012), p. 210604 (5 p.)
[14] Experimental study of work exchange with a granular gas: The viewpoint of the Fluctuation Theorem, Europhys. Lett., Volume 97 (2012), p. 20010 (6 p.)
[15] The Hatano–Sasa equality: Transitions between steady states in a granular gas, Europhys. Lett., Volume 100 (2012), p. 30002 (7 p.)
[16] Fluctuations of internal energy flow in a vibrated granular gas, Phys. Rev. Lett., Volume 95 (2005), p. 110202 (4 p.)
[17] Injected power and entropy flow in a heated granular gas, Europhys. Lett., Volume 72 (2005), pp. 55-61
[18] Dynamics of a tracer granular particle as a nonequilibrium Markov process, Phys. Rev. E, Volume 73 (2006) 021301 (13 p.)
[19] Relevance of initial and final conditions for the fluctuation relation in Markov processes, J. Stat. Mech. (2006) P08001 (22 p.)
[20] Irreversible dynamics of a massive intruder in dense granular fluids, Europhys. Lett., Volume 92 (2010), p. 34001 (5 p.)
[21] Equilibrium microstates which generate second law violating steady states, Phys. Rev. E, Volume 50 (1994), pp. 1645-1648
[22] Representation of the nonequilibrium steady-state distribution function for sheared granular systems, Prog. Theor. Phys. Suppl., Volume 184 (2010), pp. 72-87
[23] AIP Conf. Proc., 1227 (2010), pp. 19-30
[24] Nonequilibrium identities and response theory for dissipative particles, Phys. Rev. E, Volume 88 (2013) 032117 (9 p.)
[25] Mode-coupling theory of sheared dense granular liquids, Prog. Theor. Phys., Volume 119 (2008), pp. 381-402
[26] K. Suzuki, S.-H. Chong, M. Otsuki, H. Hayakawa, in preparation.
[27] Nonequilibrium mode-coupling theory for uniformly sheared underdamped systems, Phys. Rev. E, Volume 87 (2013) 012304 (27 p.)
[28] Glass transition for driven granular fluids, Phys. Rev. Lett., Volume 104 (2010), p. 225701 (4 p.)
[29] Glass transition in driven granular fluids: A mode-coupling approach, Phys. Rev. E, Volume 87 (2013) 022207 (14 p.)
[30] Mode-coupling theory for sheared granular liquids, AIP Conf. Proc., Volume 1542 (2013), pp. 670-673
[31] Rheology of dense sheared granular liquids: a mode-coupling approach (9 p.) | arXiv
Cited by Sources:
Comments - Policy