Comptes Rendus
Nonequilibrium identities of granular vibrating beds
Comptes Rendus. Mécanique, Volume 342 (2014) no. 1, pp. 17-24.

We derive the integral fluctuation theorem around a nonequilibrium stationary state for frictionless and soft core granular particles under an external vibration achieved by a balance between an external vibration and inelastic collisions. We also derive the standard fluctuation theorem and the generalized Green–Kubo formula for this system.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crme.2013.10.009
Keywords: Granular fluids, Fluctuation theorem, Green–Kubo formula

Hisao Hayakawa 1

1 Yukawa Institute for Theoretical Physics, Kyoto University, Kyoto 606-8502, Japan
@article{CRMECA_2014__342_1_17_0,
     author = {Hisao Hayakawa},
     title = {Nonequilibrium identities of granular vibrating beds},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {17--24},
     publisher = {Elsevier},
     volume = {342},
     number = {1},
     year = {2014},
     doi = {10.1016/j.crme.2013.10.009},
     language = {en},
}
TY  - JOUR
AU  - Hisao Hayakawa
TI  - Nonequilibrium identities of granular vibrating beds
JO  - Comptes Rendus. Mécanique
PY  - 2014
SP  - 17
EP  - 24
VL  - 342
IS  - 1
PB  - Elsevier
DO  - 10.1016/j.crme.2013.10.009
LA  - en
ID  - CRMECA_2014__342_1_17_0
ER  - 
%0 Journal Article
%A Hisao Hayakawa
%T Nonequilibrium identities of granular vibrating beds
%J Comptes Rendus. Mécanique
%D 2014
%P 17-24
%V 342
%N 1
%I Elsevier
%R 10.1016/j.crme.2013.10.009
%G en
%F CRMECA_2014__342_1_17_0
Hisao Hayakawa. Nonequilibrium identities of granular vibrating beds. Comptes Rendus. Mécanique, Volume 342 (2014) no. 1, pp. 17-24. doi : 10.1016/j.crme.2013.10.009. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2013.10.009/

[1] D.J. Evans; G.P. Morriss Statistical Mechanics of Nonequilibrium Liquids, Cambridge University Press, Cambridge, 2008

[2] G.P. Morriss; D.J. Evans Application of transient correlation functions to shear flow far from equilibrium, Phys. Rev. A, Volume 35 (1987), pp. 792-797

[3] D.J. Evans; E.G.D. Cohen; G.P. Morriss Probability of second law violations in shearing steady states, Phys. Rev. Lett., Volume 71 (1993), pp. 2401-2404

[4] G. Gallavotti; E.G.D. Cohen Dynamical ensembles in nonequilibrium statistical mechanics, Phys. Rev. Lett., Volume 74 (1995), pp. 2694-2697

[5] J. Kurchan Fluctuation theorem for stochastic dynamics, J. Phys. A: Math. Gen., Volume 31 (1998), pp. 3719-3729

[6] D.J. Evans; D.J. Searles The fluctuation theorem, Adv. Phys., Volume 51 (2002), pp. 1529-1585

[7] U. Seifert Stochastic thermodynamics, fluctuation theorems and molecular machines, Rep. Prog. Phys., Volume 75 (2012), p. 126001 (58 p.)

[8] C. Jarzynski Nonequilibrium equality for free energy differences, Phys. Rev. Lett., Volume 78 (1997), pp. 2690-2693

[9] G.E. Crooks Path-ensemble averages in systems driven far from equilibrium, Phys. Rev. E, Volume 61 (2000), pp. 2361-2366

[10] K. Feitosa; N. Mennon Fluidized granular medium as an instance of the fluctuation theorem, Phys. Rev. Lett., Volume 92 (2004), p. 164301 (4 p.)

[11] S.-H. Chong; M. Otsuki; H. Hayakawa Generalized Green–Kubo relation and integral fluctuation theorem for driven dissipative systems without microscopic time reversibility, Phys. Rev. E, Volume 81 (2010), p. 041130 (4 p.)

[12] N. Kumar; S. Ramaswamy; A.K. Sood Symmetry properties of the large-deviation function of the velocity of a self-propelled polar particle, Phys. Rev. Lett., Volume 106 (2011), p. 118001 (4 p.)

[13] S. Jaubaud; D. Lohse; D. van der Meer Fluctuation theorems for an asymmetric rotor in a granular gas, Phys. Rev. Lett., Volume 108 (2012), p. 210604 (5 p.)

[14] A. Naert Experimental study of work exchange with a granular gas: The viewpoint of the Fluctuation Theorem, Europhys. Lett., Volume 97 (2012), p. 20010 (6 p.)

[15] A. Mounier; A. Naert The Hatano–Sasa equality: Transitions between steady states in a granular gas, Europhys. Lett., Volume 100 (2012), p. 30002 (7 p.)

[16] A. Puglisi; P. Visco; R. Barrat; E. Trizac; F. van Wijland Fluctuations of internal energy flow in a vibrated granular gas, Phys. Rev. Lett., Volume 95 (2005), p. 110202 (4 p.)

[17] A. Puglisi; P. Visco; E. Trizac; F. van Wijland Injected power and entropy flow in a heated granular gas, Europhys. Lett., Volume 72 (2005), pp. 55-61

[18] A. Puglisi; P. Visco; E. Trizac; F. van Wijland Dynamics of a tracer granular particle as a nonequilibrium Markov process, Phys. Rev. E, Volume 73 (2006) 021301 (13 p.)

[19] A. Puglisi; L. Rondoni; A. Vulpiani Relevance of initial and final conditions for the fluctuation relation in Markov processes, J. Stat. Mech. (2006) P08001 (22 p.)

[20] A. Sarracino; D. Villamaina; G. Gradenigo; A. Puglisi Irreversible dynamics of a massive intruder in dense granular fluids, Europhys. Lett., Volume 92 (2010), p. 34001 (5 p.)

[21] D.J. Evans; D.J. Searles Equilibrium microstates which generate second law violating steady states, Phys. Rev. E, Volume 50 (1994), pp. 1645-1648

[22] S.-H. Chong; M. Otsuki; H. Hayakawa Representation of the nonequilibrium steady-state distribution function for sheared granular systems, Prog. Theor. Phys. Suppl., Volume 184 (2010), pp. 72-87

[23] H. Hayakawa; S.-H. Chong; M. Otsuki AIP Conf. Proc., 1227 (2010), pp. 19-30

[24] H. Hayakawa; M. Otsuki Nonequilibrium identities and response theory for dissipative particles, Phys. Rev. E, Volume 88 (2013) 032117 (9 p.)

[25] H. Hayakawa; M. Otsuki Mode-coupling theory of sheared dense granular liquids, Prog. Theor. Phys., Volume 119 (2008), pp. 381-402

[26] K. Suzuki, S.-H. Chong, M. Otsuki, H. Hayakawa, in preparation.

[27] K. Suzuki; H. Hayakawa Nonequilibrium mode-coupling theory for uniformly sheared underdamped systems, Phys. Rev. E, Volume 87 (2013) 012304 (27 p.)

[28] W.T. Kranz; M. Sperl; A. Zippelius Glass transition for driven granular fluids, Phys. Rev. Lett., Volume 104 (2010), p. 225701 (4 p.)

[29] W.T. Kranz; M. Sperl; A. Zippelius Glass transition in driven granular fluids: A mode-coupling approach, Phys. Rev. E, Volume 87 (2013) 022207 (14 p.)

[30] K. Suzuki; H. Hayakawa Mode-coupling theory for sheared granular liquids, AIP Conf. Proc., Volume 1542 (2013), pp. 670-673

[31] K. Suzuki; H. Hayakawa Rheology of dense sheared granular liquids: a mode-coupling approach (9 p.) | arXiv

Cited by Sources:

Comments - Policy