A linear-comparison homogenization technique and its relaxed version are used to compute bounds of the Hashin–Shtrikman and the self-consistent types for the hydrostatic strength of ideally plastic voided polycrystals. Closed-form analytical results are derived for isotropic aggregates of various cubic symmetries (fcc, bcc, ionic). The impact of the variational relaxation on the bounds is found to be significantly larger than that previously observed in fully dense polycrystals. So much so that, quite surprisingly, relaxed self-consistent bounds are found to be weaker than non-relaxed Hashin–Shtrikman bounds in some of the material systems considered.
Une technique dʼhomogénéisation non linéaire et sa version relaxée sont utilisées pour calculer des bornes de types Hashin–Shtrikman et autocohérent pour la resistance hydrostatique de polycristaux poreux parfaitement plastiques. On en dérive des résultats analytiques pour des agrégats isotropes de différentes symétries cubiques (cfc, ccc, ionique). Lʼimpact sur les bornes de la relaxation variationnelle se révèle être beaucoup plus important que celui précédemment observé dans le cas de polycristaux denses, tant et si bien que des bornes relaxées de type autocohérent sʼavèrent être plus faibles que des bornes non relaxées de type Hashin–Shtrikman dans certains systèmes matériels considérés.
Accepted:
Published online:
Mots-clés : Polycrystaux, Plasticité, Homogenisation, Bornes
Martín I. Idiart 1, 2; Juan E. Ramos Nervi 1, 3
@article{CRMECA_2014__342_1_25_0, author = {Mart{\'\i}n I. Idiart and Juan E. Ramos Nervi}, title = {Bounds on the hydrostatic plastic strength of voided polycrystals and implications for linear-comparison homogenization techniques}, journal = {Comptes Rendus. M\'ecanique}, pages = {25--31}, publisher = {Elsevier}, volume = {342}, number = {1}, year = {2014}, doi = {10.1016/j.crme.2013.11.002}, language = {en}, }
TY - JOUR AU - Martín I. Idiart AU - Juan E. Ramos Nervi TI - Bounds on the hydrostatic plastic strength of voided polycrystals and implications for linear-comparison homogenization techniques JO - Comptes Rendus. Mécanique PY - 2014 SP - 25 EP - 31 VL - 342 IS - 1 PB - Elsevier DO - 10.1016/j.crme.2013.11.002 LA - en ID - CRMECA_2014__342_1_25_0 ER -
%0 Journal Article %A Martín I. Idiart %A Juan E. Ramos Nervi %T Bounds on the hydrostatic plastic strength of voided polycrystals and implications for linear-comparison homogenization techniques %J Comptes Rendus. Mécanique %D 2014 %P 25-31 %V 342 %N 1 %I Elsevier %R 10.1016/j.crme.2013.11.002 %G en %F CRMECA_2014__342_1_25_0
Martín I. Idiart; Juan E. Ramos Nervi. Bounds on the hydrostatic plastic strength of voided polycrystals and implications for linear-comparison homogenization techniques. Comptes Rendus. Mécanique, Volume 342 (2014) no. 1, pp. 25-31. doi : 10.1016/j.crme.2013.11.002. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2013.11.002/
[1] Plastic strain in metals, J. Inst. Met., Volume 62 (1938), pp. 307-324
[2] Calculation of the flow limits of mixed crystals on the basis of the plasticity of the monocrystals, Z. Angew. Math. Mech., Volume 9 (1929), pp. 49-58
[3] Bounds for the creep behaviour of polycrystalline materials (G.J. Dvorak, ed.), Inelastic Deformation of Composite Materials, Springer, New York, 1991, pp. 175-192
[4] Variational estimates for the creep behavior of polycrystals, Proc. R. Soc. Lond. A, Volume 448 (1995), pp. 121-142
[5] Upper and lower bounds for nonlinear composite behavior, Mater. Sci. Eng. A, Volume 175 (1994), pp. 7-14
[6] Variational self-consistent estimates for viscoplastic polycrystals with highly anisotropic grains, C. R. Acad. Sci. Paris, Ser. IIb, Volume 328 (2000), pp. 11-17
[7] Variational self-consistent estimates for cubic viscoplastic polycrystals: the effects of grain anisotropy and shape, J. Mech. Phys. Solids, Volume 49 (2001), pp. 313-340
[8] Variational self-consistent estimates for texture evolution in viscoplastic polycrystals, Acta Mater., Volume 51 (2003), pp. 5425-5437
[9] Homogenization estimates for the average behavior and field fluctuations in cubic and hexagonal viscoplastic polycrystals, J. Mech. Phys. Solids, Volume 52 (2004), pp. 1175-1211
[10] Variational linear comparison bounds for nonlinear composites with anisotropic phases. I. General results, Proc. R. Soc. Lond. A, Volume 463 (2007), pp. 907-924
[11] Variational linear comparison bounds for nonlinear composites with anisotropic phases. II. Crystalline materials, Proc. R. Soc. A, Volume 463 (2007), pp. 925-943
[12] Bounding the plastic strength of polycrystalline solids by linear-comparison homogenization methods, Proc. R. Soc. Lond. A, Volume 468 (2012), pp. 1136-1153
[13] Dilatational viscoplasticity of polycrystalline solids with intergranular cavities, Philos. Mag., Volume 91 (2011), pp. 3038-3067
[14] Analyse limite et homogénéisation, C. R. Acad. Sci. Paris, Ser. II, Volume 296 (1983), pp. 1355-1358
[15] Homogenization, plasticity and yield design (G. Dal Maso; G. DellʼAntonio, eds.), Composite Media and Homogenization Theory, Birkhäuser, Basel, 1991, pp. 107-133
[16]
, Princeton University Press, Princeton, USA, 1970[17] Bounds and self-consistent estimates for the overall moduli of anisotropic composites, J. Mech. Phys. Solids, Volume 25 (1977), pp. 185-202
[18] Elasticity theory of composites (H.G. Hopkins; M.J. Sewell, eds.), Mechanics of Solids, The Rodney Hill 60th Anniversary Volume, Pergamon Press, 1982, pp. 653-686
[19] Elastic behavior of composite materials: theoretical foundations, Adv. Appl. Mech., Volume 21 (2013), pp. 169-242
Cited by Sources:
Comments - Policy