The paper is devoted to a numerical Limit Analysis of a hollow spheroidal model with a Drucker–Prager solid matrix, for several values of the corresponding friction angle ϕ. In the first part of this study, the static and the mixed kinematic 3D-codes recently evaluated in [1] are modified to use the geometry defined in [2] for spheroidal cavities in the context of a von Mises matrix. The results in terms of macroscopic criteria are satisfactory for low and medium values of ϕ, but not enough for
Accepté le :
Publié le :
Franck Pastor 1 ; Djimedo Kondo 2
@article{CRMECA_2014__342_2_96_0, author = {Franck Pastor and Djimedo Kondo}, title = {Limit analysis and lower/upper bounds to the macroscopic criterion of {Drucker{\textendash}Prager} materials with spheroidal voids}, journal = {Comptes Rendus. M\'ecanique}, pages = {96--105}, publisher = {Elsevier}, volume = {342}, number = {2}, year = {2014}, doi = {10.1016/j.crme.2013.12.002}, language = {en}, }
TY - JOUR AU - Franck Pastor AU - Djimedo Kondo TI - Limit analysis and lower/upper bounds to the macroscopic criterion of Drucker–Prager materials with spheroidal voids JO - Comptes Rendus. Mécanique PY - 2014 SP - 96 EP - 105 VL - 342 IS - 2 PB - Elsevier DO - 10.1016/j.crme.2013.12.002 LA - en ID - CRMECA_2014__342_2_96_0 ER -
%0 Journal Article %A Franck Pastor %A Djimedo Kondo %T Limit analysis and lower/upper bounds to the macroscopic criterion of Drucker–Prager materials with spheroidal voids %J Comptes Rendus. Mécanique %D 2014 %P 96-105 %V 342 %N 2 %I Elsevier %R 10.1016/j.crme.2013.12.002 %G en %F CRMECA_2014__342_2_96_0
Franck Pastor; Djimedo Kondo. Limit analysis and lower/upper bounds to the macroscopic criterion of Drucker–Prager materials with spheroidal voids. Comptes Rendus. Mécanique, Volume 342 (2014) no. 2, pp. 96-105. doi : 10.1016/j.crme.2013.12.002. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2013.12.002/
[1] 3D-FEM formulations of limit analysis methods for porous pressure-sensitive materials, Int. J. Numer. Methods Eng., Volume 95 (2013), pp. 847-870
[2] Assessment of hollow spheroid models for ductile failure prediction by limit analysis and conic programming, Eur. J. Mech. A, Solids, Volume 38 (2013), pp. 100-114
[3] Continuum theory of ductile rupture by void nucleation and growth – part I: yield criteria and flow rules for porous ductile media, J. Eng. Mater. Technol., Volume 99 (1977), pp. 2-15
[4] Yield functions and flow rules for porous pressure-dependent strain-hardening polymeric materials, J. Appl. Mech., Volume 67 (2000), pp. 288-297
[5] Continuum modeling of a porous solid with pressure sensitive dilatant matrix, J. Mech. Phys. Solids, Volume 56 (2008), pp. 2188-2212
[6] Hollow sphere models, conic programming and third stress invariant, Eur. J. Mech. A, Solids, Volume 30 (2011), pp. 63-71
[7] Approximate models for ductile metals containing non-spherical voids – case of axisymmetric prolate ellipsoidal cavities, J. Mech. Phys. Solids, Volume 41 (1993) no. 11, pp. 1723-1754
[8] Approximate models for ductile metals containing non-spherical voids – case of axisymmetric oblate ellipsoidal cavities, J. Eng. Mater. Technol., Volume 116 (1994), pp. 290-297
[9] Effective properties of porous ideally plastic or viscoplastic materials containing rigid particles, J. Mech. Phys. Solids, Volume 45 (1997), pp. 873-902
[10] An improvement of Gurson-type models of porous materials by using Eshelby-like trial velocity fields, C. R. Mecanique, Volume 335 (2007), pp. 32-41
[11] Macroscopic yield criteria for plastic anisotropic materials containing spheroidal voids, Int. J. Plast., Volume 24 (2008), pp. 1158-1189
[12] V. Monchiet, E. Charkaluk, D. Kondo, Macroscopic yield criteria for ductile materials containing spheroidal voids: an Eshelby-like velocity fields approach, Mech. Mater., . | DOI
[13] Limit analysis of unidirectional porous media, Mech. Res. Commun., Volume 25 (1998), pp. 535-542
[14] Ductile failure of cylindrically porous materials. Part I: Plane stress problem and experimental results, Eur. J. Mech. A, Solids, Volume 23 (2004), pp. 181-190
[15] Ductile failure of cylindrically porous materials. Part II: Other cases of symmetry, Eur. J. Mech. A, Solids, Volume 23 (2004), pp. 191-201
[16] Limit analysis and Gurson's model, Eur. J. Mech. A, Solids, Volume 24 (2005), pp. 800-819
[17] Calcul à la rupture et analyse limite, Presses des Ponts et Chaussées, Paris, 1983
[18] Finite element limit analysis using linear programming, Int. J. Solids Struct., Volume 8 (1972), pp. 1413-1431
[19] A new discontinuous upper bound limit analysis formulation, Int. J. Numer. Methods Eng., Volume 63 (2005), pp. 1069-1088
[20] Résolution par des méthodes de point intérieur de problèmes de programmation convexe posés par l'analyse limite, facultés universitaires Notre-Dame-de-la-Paix, Namur, Belgium, 2007 (thèse de doctorat)
[21] Mixed method and convex optimization for limit analysis of homogeneous Gurson materials: a kinematical approach, Eur. J. Mech. A, Solids, Volume 28 (2009), pp. 25-35
[22] Upper bound limit analysis using discontinuous quadratic displacement fields, Commun. Numer. Methods Eng., Volume 24 (2008), pp. 911-927
[23] http://www.mosek.com (C/O Symbion Science Park, Fruebjergvej 3, Box 16, 2010 Copenhagen ϕ, Denmark)
, 2010[24] Closed form solutions for the hollow sphere model with Coulomb and Drucker–Prager materials under isotropic loadings, C. R. Mecanique, Volume 337 (2009), pp. 260-267
- Evaluation and improvement of macroscopic yield criteria of porous media having a Drucker-Prager matrix, International Journal of Plasticity, Volume 126 (2020), p. 102609 | DOI:10.1016/j.ijplas.2019.09.015
- Approximate macroscopic yield criteria for Drucker-Prager type solids with spheroidal voids, International Journal of Plasticity, Volume 99 (2017), p. 221 | DOI:10.1016/j.ijplas.2017.09.008
- Limit analysis and homogenization of porous materials with Mohr–Coulomb matrix. Part II: Numerical bounds and assessment of the theoretical model, Journal of the Mechanics and Physics of Solids, Volume 91 (2016), p. 14 | DOI:10.1016/j.jmps.2016.01.017
- Limit Analysis and Macroscopic Strength of Porous Materials with Coulomb Matrix, Direct Methods for Limit and Shakedown Analysis of Structures (2015), p. 27 | DOI:10.1007/978-3-319-12928-0_2
Cité par 4 documents. Sources : Crossref
Commentaires - Politique