We investigate the boundary condition between a free fluid and a porous medium, where the interface between the two is given as a periodically curved structure. Using a coordinate transformation, we can employ methods of periodic homogenisation to derive effective boundary conditions for the transformed system. In the porous medium, the fluid velocity is given by Darcy's law with a non-constant permeability matrix. In tangential direction as well as for the pressure, a jump appears. Its magnitudes can be calculated with the help of a generalised boundary layer function. The results can be interpreted as a generalised law of Beavers and Joseph for curved interfaces.
On considère le comportement d'un fluide libre au-dessus d'un milieu poreux avec une interface courbée périodique. Utilisant une transformation des coordonnées, on peut utiliser des méthodes d'homogénéisation périodique pour la dérivation des conditions aux limites. Le comportement du fluide en milieu poreux est donné par une loi de Darcy avec une matrice de perméabilité non constante. Ensuite, on obtient le comportement du fluide à l'interface. Une discontinuité apparaît pour la pression ainsi que pour la vitesse tangentielle. L'amplitude des discontinuités peut être calculée par une fonction de couche limite généralisée. Ainsi, les résultats donnent une loi généralisée de Beavers et Joseph pour des interfaces courbées.
Accepted:
Published online:
Mots-clés : Mécanique des fluides, Homogénéisation, Transport de masse à travers une surface de séparation, Milieux poreux
Sören Dobberschütz 1
@article{CRMECA_2014__342_2_73_0, author = {S\"oren Dobbersch\"utz}, title = {Stokes{\textendash}Darcy coupling for periodically curved interfaces}, journal = {Comptes Rendus. M\'ecanique}, pages = {73--78}, publisher = {Elsevier}, volume = {342}, number = {2}, year = {2014}, doi = {10.1016/j.crme.2013.12.003}, language = {en}, }
Sören Dobberschütz. Stokes–Darcy coupling for periodically curved interfaces. Comptes Rendus. Mécanique, Volume 342 (2014) no. 2, pp. 73-78. doi : 10.1016/j.crme.2013.12.003. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2013.12.003/
[1] Boundary conditions at a naturally permeable wall, J. Fluid Mech., Volume 30 (1967), pp. 197-207
[2] On the boundary condition at the interface of a porous medium, Stud. Appl. Math., Volume 1 (1971), pp. 93-101
[3] On the boundary conditions at the contact interface between a porous medium and a free fluid, Ann. Sc. Norm. Super. Pisa, Cl. Fis. Mat. Ser. IV, Volume 23 (1996) no. 3, pp. 403-465
[4] On the interface boundary condition of Beavers, Joseph, and Saffman, SIAM J. Math. Anal., Volume 60 (2000) no. 4, pp. 1111-1127
[5] Effective pressure interface law for transport phenomena between an unconfined fluid and a porous medium using homogenization, Multiscale Model. Simul., Volume 10 (2012) no. 2, pp. 285-305
[6] A result on the decay of the boundary layers in the homogenization theory, Asymptot. Anal., Volume 23 (2000), pp. 313-328
[7] The boundary behaviour of a composite material, Math. Model. Numer. Anal., Volume 35 (2001) no. 3, pp. 407-435
[8] A transformation approach for the derivation of boundary conditions between a curved porous medium and a free fluid, C. R. Méc., Volume 338 (2010) no. 2, pp. 71-77
[9] Derivation of boundary conditions at a curved contact interface between a free fluid and a porous medium via homogenisation theory, University of Bremen, Germany, 2009 (Diploma thesis)
[10] Homogenization and Porous Media (U. Hornung, ed.), Springer, 1997
[11] Navier–Stokes Equation, Theory and Numerical Analysis, North-Holland, 1977
[12] On boundary conditions for fluid flow in porous media, Int. J. Eng. Sci., Volume 13 (1975), pp. 923-940
[13] Équations et phénomènes de surface pour l'écoulement dans un modèle de milieux poreux, J. Méc., Volume 14 (1975) no. 1, pp. 73-108
Cited by Sources:
Comments - Policy