Instability of flexible tubes conducting fluid, or “garden hose instability”, is a phenomenon both familiar from everyday life and important for applications, which has been actively studied. However, previous works did not consider one of the most crucial physical effects — the dynamical change of the cross-section. We show how to consistently address this issue by coupling the geometrically exact rod dynamics with the fluid motion via the use of a constrained Hamilton's variational principle. We find strong effect of this dynamics on stability, and derive a variety of exact nonlinear solutions of traveling-wave type.
L'instabilité des tuyaux souples avec écoulement interne, ou « instabilité du tuyau d'arrosage », est un phénomène commun, étudié de longue date, et qui a d'importantes applications. Cependant, les travaux antérieurs ne tiennent pas compte d'un effet crucial : la dynamique de la section transversale du tube. Nous montrons comment l'inclure dans la dynamique en utilisant un principe de Hamilton avec contrainte, couplant la dynamique d'une tige géométriquement exacte et celle de l'écoulement interne. Nous prouvons que cela affecte l'instabilité et calculons une classe de solutions exactes de type ondes progressives.
Accepted:
Published online:
Mots-clés : Interaction fluide–structure, Tuyaux souples, Instabilité du tuyau d'arrosage, Modèles géométriquement exacts, Principes variationels
François Gay-Balmaz 1; Vakhtang Putkaradze 2
@article{CRMECA_2014__342_2_79_0, author = {Fran\c{c}ois Gay-Balmaz and Vakhtang Putkaradze}, title = {Exact geometric theory for flexible, fluid-conducting tubes}, journal = {Comptes Rendus. M\'ecanique}, pages = {79--84}, publisher = {Elsevier}, volume = {342}, number = {2}, year = {2014}, doi = {10.1016/j.crme.2014.01.001}, language = {en}, }
François Gay-Balmaz; Vakhtang Putkaradze. Exact geometric theory for flexible, fluid-conducting tubes. Comptes Rendus. Mécanique, Volume 342 (2014) no. 2, pp. 79-84. doi : 10.1016/j.crme.2014.01.001. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2014.01.001/
[1] J. Appl. Mech., 17 (1950), pp. 229-232
[2] Int. J. Solids Struct., 47 (2010), pp. 161-168
[3] Proc. R. Soc. A, 261 (1961), pp. 457-486
[4] Annu. Rev. Fluid Mech., 15 (1983), pp. 461-512
[5]
, Springer (2012), pp. 15-24[6] Philos. Mag., 4 (1927), pp. 208-223
[7] Philos. Mag., 5 (1928), pp. 673-695
[8] Eur. J. Mech. A Solids, 21 (2002), pp. 857-867
[9] Appl. Mech. Rev., 58 (2005), pp. 117-142
[10] Arch. Ration. Mech. Anal., 197 (2010), pp. 811-902
[11] J. Phys. Conf. Ser., 166 (2009), p. 012017
[12] J. Fluid Mech., 433 (2001), pp. 357-382
[13] J. Sound Vib., 332 (2013), pp. 6405-6418
[14] Proc. R. Soc. A, 293 (1966), pp. 512-527
[15] Proc. R. Soc. A, 293 (1966), pp. 528-542
[16] C. R. Acad. Sci. Paris Ser. I, 347 (2009), pp. 1093-1098
[17] J. Fluids Struct., 7 (1993), pp. 137-204
[18] Hydrodynamics, Dover, 1932
[19] J. Fluids Struct., 7 (2009), pp. 535-543
[20] Fluid–Structure Interactions. Slender Structures and Axial Flow, vol. 1, Academic Press, London, 1998
[21] Fluid–Structure Interactions. Slender Structures and Axial Flow, vol. 2, Academic Press, London, 2004
[22] J. Sound Vib., 169 (1994), pp. 577-599
[23] Arch. Ration. Mech. Anal., 104 (1988), pp. 125-183
[24] J. Fluid Mech., 370 (1998), pp. 297-320
Cited by Sources:
Comments - Policy