Comptes Rendus
Exact geometric theory for flexible, fluid-conducting tubes
Comptes Rendus. Mécanique, Volume 342 (2014) no. 2, pp. 79-84.

Instability of flexible tubes conducting fluid, or “garden hose instability”, is a phenomenon both familiar from everyday life and important for applications, which has been actively studied. However, previous works did not consider one of the most crucial physical effects — the dynamical change of the cross-section. We show how to consistently address this issue by coupling the geometrically exact rod dynamics with the fluid motion via the use of a constrained Hamilton's variational principle. We find strong effect of this dynamics on stability, and derive a variety of exact nonlinear solutions of traveling-wave type.

L'instabilité des tuyaux souples avec écoulement interne, ou « instabilité du tuyau d'arrosage », est un phénomène commun, étudié de longue date, et qui a d'importantes applications. Cependant, les travaux antérieurs ne tiennent pas compte d'un effet crucial : la dynamique de la section transversale du tube. Nous montrons comment l'inclure dans la dynamique en utilisant un principe de Hamilton avec contrainte, couplant la dynamique d'une tige géométriquement exacte et celle de l'écoulement interne. Nous prouvons que cela affecte l'instabilité et calculons une classe de solutions exactes de type ondes progressives.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crme.2014.01.001
Keywords: Fluid–structure interactions, Flexible tubes, Garden hose instability, Geometrically exact models, Variational principles
Mot clés : Interaction fluide–structure, Tuyaux souples, Instabilité du tuyau d'arrosage, Modèles géométriquement exacts, Principes variationels

François Gay-Balmaz 1; Vakhtang Putkaradze 2

1 LMD – École normale supérieure de Paris – CNRS, 75005 Paris, France
2 Department of Mathematical and Statistical Sciences, University of Alberta, Edmonton, AB T6G 2G1, Canada
@article{CRMECA_2014__342_2_79_0,
     author = {Fran\c{c}ois Gay-Balmaz and Vakhtang Putkaradze},
     title = {Exact geometric theory for flexible, fluid-conducting tubes},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {79--84},
     publisher = {Elsevier},
     volume = {342},
     number = {2},
     year = {2014},
     doi = {10.1016/j.crme.2014.01.001},
     language = {en},
}
TY  - JOUR
AU  - François Gay-Balmaz
AU  - Vakhtang Putkaradze
TI  - Exact geometric theory for flexible, fluid-conducting tubes
JO  - Comptes Rendus. Mécanique
PY  - 2014
SP  - 79
EP  - 84
VL  - 342
IS  - 2
PB  - Elsevier
DO  - 10.1016/j.crme.2014.01.001
LA  - en
ID  - CRMECA_2014__342_2_79_0
ER  - 
%0 Journal Article
%A François Gay-Balmaz
%A Vakhtang Putkaradze
%T Exact geometric theory for flexible, fluid-conducting tubes
%J Comptes Rendus. Mécanique
%D 2014
%P 79-84
%V 342
%N 2
%I Elsevier
%R 10.1016/j.crme.2014.01.001
%G en
%F CRMECA_2014__342_2_79_0
François Gay-Balmaz; Vakhtang Putkaradze. Exact geometric theory for flexible, fluid-conducting tubes. Comptes Rendus. Mécanique, Volume 342 (2014) no. 2, pp. 79-84. doi : 10.1016/j.crme.2014.01.001. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2014.01.001/

[1] H. Ashley; G. Haviland J. Appl. Mech., 17 (1950), pp. 229-232

[2] M.A. Beauregard; A. Goriely; M. Tabor Int. J. Solids Struct., 47 (2010), pp. 161-168

[3] T.B. Benjamin Proc. R. Soc. A, 261 (1961), pp. 457-486

[4] S.A. Berger; L. Talbot; L.S. Yao Annu. Rev. Fluid Mech., 15 (1983), pp. 461-512

[5] A. Cros; J.A.R. Romero; F.C. Flores, Springer (2012), pp. 15-24

[6] W.R. Dean Philos. Mag., 4 (1927), pp. 208-223

[7] W.R. Dean Philos. Mag., 5 (1928), pp. 673-695

[8] O. Doaré; E. de Langre Eur. J. Mech. A Solids, 21 (2002), pp. 857-867

[9] I. Elishakoff Appl. Mech. Rev., 58 (2005), pp. 117-142

[10] D. Ellis; D.D. Holm; F. Gay-Balmaz; V. Putkaradze; T. Ratiu Arch. Ration. Mech. Anal., 197 (2010), pp. 811-902

[11] F.C. Flores; A. Cros J. Phys. Conf. Ser., 166 (2009), p. 012017

[12] D. Gammack; P. Hydon J. Fluid Mech., 433 (2001), pp. 357-382

[13] M.H. Ghayesh; M.P. Païdoussis; M. Amabili J. Sound Vib., 332 (2013), pp. 6405-6418

[14] R.W. Gregory; M.P. Païdoussis Proc. R. Soc. A, 293 (1966), pp. 512-527

[15] R.W. Gregory; M.P. Païdoussis Proc. R. Soc. A, 293 (1966), pp. 528-542

[16] D.D. Holm; V. Putkaradze C. R. Acad. Sci. Paris Ser. I, 347 (2009), pp. 1093-1098

[17] M.P. Païdoussis; G.X. Li J. Fluids Struct., 7 (1993), pp. 137-204

[18] H. Lamb Hydrodynamics, Dover, 1932

[19] Y. Modarres-Sadeghi; M.P. Païdoussis J. Fluids Struct., 7 (2009), pp. 535-543

[20] M.P. Païdoussis Fluid–Structure Interactions. Slender Structures and Axial Flow, vol. 1, Academic Press, London, 1998

[21] M.P. Païdoussis Fluid–Structure Interactions. Slender Structures and Axial Flow, vol. 2, Academic Press, London, 2004

[22] C. Semler; G.X. Li; M.P. Païdoussis J. Sound Vib., 169 (1994), pp. 577-599

[23] J.C. Simó; J.E. Marsden; P.S. Krishnaprasad Arch. Ration. Mech. Anal., 104 (1988), pp. 125-183

[24] L. Zabielski; A.J. Mestel J. Fluid Mech., 370 (1998), pp. 297-320

Cited by Sources:

Comments - Policy