Comptes Rendus
Separation flow control
Optimization of jet parameters to control the flow on a ramp
Comptes Rendus. Mécanique, Volume 342 (2014) no. 6-7, pp. 363-375.

This study deals with the use of optimization algorithms to determine efficient parameters of flow control devices. To improve the performance of systems characterized by detached flows and vortex shedding, the use of flow control devices such as oscillatory jets are intensively studied. However, the determination of efficient control parameters is still a bottleneck for industrial problems. Therefore, we propose to couple a global optimization algorithm with an unsteady flow simulation to derive efficient flow control rules. We consider as a test case a backward-facing step with a slope of 25°, including a synthetic jet actuator. The aim is to reduce the time-averaged recirculation length behind the step by optimizing the jet blowing/suction amplitude and frequency.

Published online:
DOI: 10.1016/j.crme.2013.12.009
Keywords: Flow control, Optimization, Ramp

Emmanuel Guilmineau 1; Régis Duvigneau 2; Jérémie Labroquère 2

1 LHEEA, CNRS UMR 6598, École centrale de Nantes, 1, rue de la Noë, BP 92101, 44321 Nantes cedex 3, France
2 INRIA Sophia Antipolis–Méditerrannée, OPALE Project Team, 2004, route des Lucioles, 06902 Sophia-Antipolis, France
     author = {Emmanuel Guilmineau and R\'egis Duvigneau and J\'er\'emie Labroqu\`ere},
     title = {Optimization of jet parameters to control the flow on a ramp},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {363--375},
     publisher = {Elsevier},
     volume = {342},
     number = {6-7},
     year = {2014},
     doi = {10.1016/j.crme.2013.12.009},
     language = {en},
AU  - Emmanuel Guilmineau
AU  - Régis Duvigneau
AU  - Jérémie Labroquère
TI  - Optimization of jet parameters to control the flow on a ramp
JO  - Comptes Rendus. Mécanique
PY  - 2014
SP  - 363
EP  - 375
VL  - 342
IS  - 6-7
PB  - Elsevier
DO  - 10.1016/j.crme.2013.12.009
LA  - en
ID  - CRMECA_2014__342_6-7_363_0
ER  - 
%0 Journal Article
%A Emmanuel Guilmineau
%A Régis Duvigneau
%A Jérémie Labroquère
%T Optimization of jet parameters to control the flow on a ramp
%J Comptes Rendus. Mécanique
%D 2014
%P 363-375
%V 342
%N 6-7
%I Elsevier
%R 10.1016/j.crme.2013.12.009
%G en
%F CRMECA_2014__342_6-7_363_0
Emmanuel Guilmineau; Régis Duvigneau; Jérémie Labroquère. Optimization of jet parameters to control the flow on a ramp. Comptes Rendus. Mécanique, Volume 342 (2014) no. 6-7, pp. 363-375. doi : 10.1016/j.crme.2013.12.009.

[1] J. Donovan; L. Kral; A. Cary Active flow control applied to an airfoil, Reno, NV (1998) (AIAA Paper 98-0210)

[2] J. Ekaterinaris Active flow control of wing separated flow, Honolulu, Hawaii, USA (2003) (no. FEDSM2003-45237)

[3] R. Duvigneau; M. Visonneau Optimization of a synthetic jet actuator for aerodynamic stall control, Comput. Fluids, Volume 35 (2006), pp. 624-638

[4] A. Zymaris; D. Papadimitriou; K. Giannakoglou; C. Othmer Optimal location for suction or blowing jets using the continuous adjoint approach, ECCOMAS 2010, Lisbon, Portugal (2010)

[5] E. Garnier; P. Pamart; J. Dandois; P. Sagaut Evaluation of the unsteady RANS capabilities for separated flows control, Comput. Fluids, Volume 61 (2012), pp. 39-45

[6] J. Labroquère; R. Duvigneau; E. Guilmineau Impact of turbulence closures and numerical errors for the optimization of flow control devices, San Diego, California, USA (2013) (AIAA Paper 2013-2846)

[7] H. Jasak; H. Weller; A. Gosman High resolution NVD differencing scheme for arbitrarily unstructured meshes, Int. J. Numer. Methods Fluids, Volume 31 (1999), pp. 431-449

[8] B. Leonard Simple high-accuracy resolution program for convective modelling of discontinuities, Int. J. Numer. Methods Fluids, Volume 8 (1988), pp. 1291-1318

[9] P. Queutey; M. Visonneau An interface capturing method for free-surface hydrodynamic flows, Comput. Fluids, Volume 36 (2007), pp. 1481-1510

[10] C. Rhie; W. Chow A numerical study of the turbulent flow past an isolated aerofoil with trailing edge separation, AIAA J., Volume 17 (1983), pp. 1525-1532

[11] R. Issa Solution of the implicitly discretized fluid flow equations by operator-splitting, J. Comput. Phys., Volume 62 (1985), pp. 40-65

[12] G.D. Deng; M. Visonneau Comparison of explicit algebraic stress models and second-order turbulence closures for steady flow around ships, Nantes, France (1999), p. 4.4-1-4.4-15

[13] R. Duvigneau; M. Visonneau; G.B. Deng On the role played by turbulence closures in hull ship optimization at model and full scale, J. Mar. Sci. Technol., Volume 8 (2003), pp. 11-25

[14] E. Guilmineau; G.B. Deng; J. Wackers Numerical simulation with a DES approach for automotive flows, J. Fluids Struct., Volume 27 (2011), pp. 807-816

[15] C. Williams Prediction with Gaussian processes: from linear regression to linear prediction and beyond (M. Jordan, ed.), Learning in Graphical Models, Kluwer Academic Publishers, 1998, pp. 599-621

[16] M. Gibbs; D. MacKay Efficient implementation of Gaussian processes, 1997 (Tech. Rep.)

[17] R. Duvigneau; P. Chandrashekar Kriging-based optimization applied to flow control, Int. J. Numer. Methods Fluids, Volume 69 (2012), pp. 1701-1714

[18] A. Thacker; R. Joussot Présentation des premiers résultats expérimentaux sur le montage du GDR, Réunion du GDR Contrôle des décollements, juin 2012

Cited by Sources:

Comments - Policy