Turbulent boundary layer separation induced by a salient ramp and a smooth-edge one are characterized. Upstream from the separation point, the momentum thickness Reynolds number . Pressure distribution and gradient pressure distribution are analyzed on the overall model. Upstream from the ramp, boundary layer is characterized using hot-wire anemometry. Recirculation zone and unsteady behavior of separation point are evaluated using a PIV system. The shear layer roll-up and vortex shedding times scales obtained with cross hot-wire anemometry show good agreements with the literature. This study is a step toward the development of a robust control strategy undertaken in the frame of the ANR SePaCode project (2011–2014).
Accepted:
Published online:
Antoine Debien 1; Sandrine Aubrun 1; Nicolas Mazellier 1; Azeddine Kourta 1
@article{CRMECA_2014__342_6-7_356_0, author = {Antoine Debien and Sandrine Aubrun and Nicolas Mazellier and Azeddine Kourta}, title = {Salient and smooth edge ramps inducing turbulent boundary layer separation: {Flow} characterization for control perspective}, journal = {Comptes Rendus. M\'ecanique}, pages = {356--362}, publisher = {Elsevier}, volume = {342}, number = {6-7}, year = {2014}, doi = {10.1016/j.crme.2014.05.003}, language = {en}, }
TY - JOUR AU - Antoine Debien AU - Sandrine Aubrun AU - Nicolas Mazellier AU - Azeddine Kourta TI - Salient and smooth edge ramps inducing turbulent boundary layer separation: Flow characterization for control perspective JO - Comptes Rendus. Mécanique PY - 2014 SP - 356 EP - 362 VL - 342 IS - 6-7 PB - Elsevier DO - 10.1016/j.crme.2014.05.003 LA - en ID - CRMECA_2014__342_6-7_356_0 ER -
%0 Journal Article %A Antoine Debien %A Sandrine Aubrun %A Nicolas Mazellier %A Azeddine Kourta %T Salient and smooth edge ramps inducing turbulent boundary layer separation: Flow characterization for control perspective %J Comptes Rendus. Mécanique %D 2014 %P 356-362 %V 342 %N 6-7 %I Elsevier %R 10.1016/j.crme.2014.05.003 %G en %F CRMECA_2014__342_6-7_356_0
Antoine Debien; Sandrine Aubrun; Nicolas Mazellier; Azeddine Kourta. Salient and smooth edge ramps inducing turbulent boundary layer separation: Flow characterization for control perspective. Comptes Rendus. Mécanique, Flow separation control, Volume 342 (2014) no. 6-7, pp. 356-362. doi : 10.1016/j.crme.2014.05.003. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2014.05.003/
[1] Turbulent boundary-layer separation, Annu. Rev. Fluid Mech., Volume 21 (1989) no. 1, pp. 205-232
[2] The structure of a separating turbulent boundary layer. Part 1. Mean flow and Reynolds stresses, J. Fluid Mech., Volume 113 (1981), pp. 23-51
[3] The structure of a separating turbulent boundary layer. Part 2. Higher-order turbulence results, J. Fluid Mech., Volume 113 (1981), pp. 53-73
[4] Experimental study of a separating, reattaching, and redeveloping flow over a smoothly contoured ramp, Int. J. Heat Fluid Flow, Volume 21 (2000) no. 5, pp. 512-519
[5] R. Mittal, R.B. Kotapati, L.N. Cattafesta, Numerical study of resonant interactions and flow control in a canonical separated flow, AIAA Pap. 1261, 2005.
[6] A First Course in Turbulence, MIT Press, Cambridge, MA, USA, 1972
[7] The flow over a backward-facing step under controlled perturbation: laminar separation, J. Fluid Mech., Volume 238 (1992), pp. 73-96
[8] Turbulence suppression in free shear flows by controlled excitation, J. Fluid Mech., Volume 574 (1981), pp. 25-58
[9] Unsteady measurements in a separated and reattaching flow, J. Fluid Mech., Volume 144 (1984), pp. 13-46
[10] Numerical simulation of active separation control by a synthetic jet, J. Fluid Mech., Volume 574 (2007) no. 1, pp. 25-58
[11] Analysis and correlation of data on pressure fluctuations in separated flows, J. Aircr., Volume 9 (1972), pp. 642-645
[12] Mid-chord separation control using PSJ and DBD plasmas actuators, ERCOFTAC Bull., Volume 94 (2013)
[13] Open and closed-loop experiments to reattach a thick turbulent boundary layer, 28–31 July 2011, Ottawa, Canada (2011) http://www.tsfp-conference.org/index.php/proceedings/22-tsfp7-contents-of-volume-3 http://www.tsfp-conference.org/images/stories/proceedings/2011/8c4p.pdf
[14] Transient dynamics of the flow around a NACA 0015 airfoil using fluidic vortex generators, Int. J. Heat Fluid Flow, Volume 31 (2010), pp. 450-459
[15] Issues in active flow control: theory, control, simulation and experiment, Prog. Aerosp. Sci., Volume 40 (2004), pp. 237-289
[16] The control of flow separation by periodic excitation, Prog. Aerosp. Sci., Volume 36 (2000), pp. 487-545
[17] The taming of the shrew: why is it so difficult to control turbulence?, Active Flow Control, Springer, Berlin, Heidelberg, 2007, pp. 1-24
[18] D. Arnal, Special Course on Stability and Transition of Laminar Flow, AGARD-R-709, 1984.
[19] The diagnostic plot—a litmus test for wall bounded turbulence data, Eur. J. Mech. B, Fluids, Volume 29 (2010) no. 6, pp. 403-406
[20] Bursting and structure of the turbulence in an internal flow manipulated by riblets, Appl. Sci. Res., Volume 50 (1993) no. 3–4, pp. 189-213
[21] Towards better uncertainty estimates for turbulence statistics, Exp. Fluids, Volume 22 (1996) no. 2, pp. 129-136
Cited by Sources:
Comments - Policy