Comptes Rendus
High-frequency cell vibrations and spatial skin effect in thick cascade junction with heavy concentrated masses
Comptes Rendus. Mécanique, Volume 342 (2014) no. 4, pp. 221-228.

We study the asymptotic behavior of eigenvalues and eigenfunctions of the Laplacian in a 2D thick cascade junction with heavy concentrated masses. We present two-term asymptotic approximations, as ε0, for the eigenelements in the case of “slightly heavy”, “moderate heavy”, and “super heavy” concentrated masses. Asymptotics of high-frequency cell-vibrations are found as well.

Nous étudions le comportement asymptotique des valeurs et fonctions propres du laplacien dans une jonction cascade épaisse bidimensionnelle, avec des masses lourdes concentrées. Si ε0, nous présentons des approximations asymptotiques en deux termes pour les éléments propres dans les cas des masses concentrées « peu lourdes », « modérément lourdes » et « super-lourdes ». L'analyse asymptotique pour les vibrations à haute fréquence cellulaire est aussi trouvée.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crme.2014.01.002
Keywords: Asymptotic expansion, Spectral problem, Thick cascade junction, Domain with highly oscillating boundary, Concentrated masses
Mots-clés : Développement asymptotique, Problème spectral, Jonction cascade épaisse, Domaine avec oscillation forte du bord, Masses concentrées

Gregory A. Chechkin 1; Taras A. Mel'nyk 2

1 Department of Differential Equations, Faculty of Mechanics and Mathematics, M.V. Lomonosov Moscow State University, Moscow 119991, Russia
2 Department of Mathematical Physics, Faculty of Mechanics and Mathematics, Taras Shevchenko National University of Kyiv, Volodymyrska st., 64/13, Kyiv 01601, Ukraine
@article{CRMECA_2014__342_4_221_0,
     author = {Gregory A. Chechkin and Taras A. Mel'nyk},
     title = {High-frequency cell vibrations and spatial skin effect in thick cascade junction with heavy concentrated masses},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {221--228},
     publisher = {Elsevier},
     volume = {342},
     number = {4},
     year = {2014},
     doi = {10.1016/j.crme.2014.01.002},
     language = {en},
}
TY  - JOUR
AU  - Gregory A. Chechkin
AU  - Taras A. Mel'nyk
TI  - High-frequency cell vibrations and spatial skin effect in thick cascade junction with heavy concentrated masses
JO  - Comptes Rendus. Mécanique
PY  - 2014
SP  - 221
EP  - 228
VL  - 342
IS  - 4
PB  - Elsevier
DO  - 10.1016/j.crme.2014.01.002
LA  - en
ID  - CRMECA_2014__342_4_221_0
ER  - 
%0 Journal Article
%A Gregory A. Chechkin
%A Taras A. Mel'nyk
%T High-frequency cell vibrations and spatial skin effect in thick cascade junction with heavy concentrated masses
%J Comptes Rendus. Mécanique
%D 2014
%P 221-228
%V 342
%N 4
%I Elsevier
%R 10.1016/j.crme.2014.01.002
%G en
%F CRMECA_2014__342_4_221_0
Gregory A. Chechkin; Taras A. Mel'nyk. High-frequency cell vibrations and spatial skin effect in thick cascade junction with heavy concentrated masses. Comptes Rendus. Mécanique, Volume 342 (2014) no. 4, pp. 221-228. doi : 10.1016/j.crme.2014.01.002. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2014.01.002/

[1] E. Sánchez-Palencia Perturbation of eigenvalues in thermo-elasticity and vibration of systems with concentrated masses, Trends and Applications of Pure Mathematics to Mechanics, Lect. Notes Phys., vol. 195, Springer-Verlag, 1984, pp. 346-368

[2] G.A. Chechkin; T.A. Mel'nyk Asymptotics of eigenelements to spectral problem in thick cascade junction with concentrated masses, Appl. Anal., Volume 91 (2012) no. 6, pp. 1055-1095 | DOI

[3] G.A. Chechkin; T.A. Mel'nyk Spatial-skin effect for eigenvibrations of a thick cascade junction with “heavy” concentrated masses, Math. Methods Appl. Sci., Volume 37 (2014) no. 1, pp. 56-74 | DOI

[4] M. Lobo; M.E. Pérez A skin effect for systems with many concentrated masses, C. R. Acad. Sci. Paris, Ser. IIb, Volume 327 (1999), pp. 771-776

[5] M. Lobo; M.E. Pérez Local problems for vibrating systems with concentrated masses: a review, C. R. Acad. Sci. Paris, Ser. IIb, Volume 331 (2003), pp. 303-317

[6] C. Leal; E. Sánchez-Palencia Perturbation of the eigenvalues of a membrane with concentrated mass, Q. Appl. Math., Volume 47 (1989), pp. 93-103

[7] O.A. Oleinik; J. Sánchez-Hubert; G.A. Yosifian On vibration of a membrane with concentrated masses, Bull. Sci. Math., Volume 115 (1991) no. 2, pp. 1-27

[8] G.A. Chechkin Asymptotic expansion of eigenvalues and eigenfunctions of an elliptic operator in a domain with many “light” concentrated masses situated on the boundary. Two-dimensional case, Izv. Math., Volume 69 (2005) no. 4, pp. 805-846 (transl. from: Izv. RAN Ser. Mat., 69, 4, 2005, pp. 161-204)

[9] T.A. Mel'nyk Vibrations of a thick periodic junction with concentrated masses, Math. Models Methods Appl. Sci., Volume 11 (2001) no. 6, pp. 1001-1029

[10] O.A. Oleinik; G.A. Yosifian; A.S. Shamaev Mathematical Problems in Elasticity and Homogenization, North-Holland, Amsterdam, 1992 (Russian edition: MGU, Moscow, 1990)

[11] M.E. Pérez; S.A. Nazarov New asymptotic effects for the spectrum of problems on concentrated masses near the boundary, C. R. Acad. Sci. Paris, Ser. IIb, Volume 337 (2009), pp. 585-590

[12] A.M. Il'in Matching of Asymptotic Expansions of Solutions of Boundary Value Problems, Transl. Math. Monogr., vol. 102, American Mathematical Society, Providence, RI, USA, 1992

[13] V.A. Kondrat'ev; O.A. Oleinik Boundary-value problems for partial differential equations in non-smooth domains, Russ. Math. Surv., Volume 38 (1983) no. 2, pp. 1-86 (transl. from: Usp. Mat. Nauk, 38, 2, 1983, pp. 3-76)

[14] T.A. Mel'nyk Homogenization of the Poisson equation in a thick periodic junction, Z. Anal. Anwend., Volume 18 (1999) no. 4, pp. 953-975

[15] T.A. Mel'nyk Scheme of investigation of the spectrum of a family of perturbed operators and its application to spectral problems in thick junctions, Nonlinear Oscil., Volume 6 (2003) no. 2, pp. 232-249

[16] T.A. Mel'nyk Asymptotic analysis of a spectral problem in a periodic thick junction of type 3:2:1, Math. Methods Appl. Sci., Volume 23 (2000), pp. 321-346

[17] M.I. Vishik; L.A. Lyusternik Regular degeneration and boundary layer for linear differential equations with small parameter, Transl. Amer. Math. Soc., Ser. 2, Volume 20 (1962) no. 5, pp. 239-364 transl. from: Usp. Mat. Nauk, 12, 1957, pp. 3-122 (in Russian)

Cited by Sources:

Comments - Policy