We study the asymptotic behavior of eigenvalues and eigenfunctions of the Laplacian in a 2D thick cascade junction with heavy concentrated masses. We present two-term asymptotic approximations, as , for the eigenelements in the case of “slightly heavy”, “moderate heavy”, and “super heavy” concentrated masses. Asymptotics of high-frequency cell-vibrations are found as well.
Nous étudions le comportement asymptotique des valeurs et fonctions propres du laplacien dans une jonction cascade épaisse bidimensionnelle, avec des masses lourdes concentrées. Si , nous présentons des approximations asymptotiques en deux termes pour les éléments propres dans les cas des masses concentrées « peu lourdes », « modérément lourdes » et « super-lourdes ». L'analyse asymptotique pour les vibrations à haute fréquence cellulaire est aussi trouvée.
Accepted:
Published online:
Mots-clés : Développement asymptotique, Problème spectral, Jonction cascade épaisse, Domaine avec oscillation forte du bord, Masses concentrées
Gregory A. Chechkin 1; Taras A. Mel'nyk 2
@article{CRMECA_2014__342_4_221_0, author = {Gregory A. Chechkin and Taras A. Mel'nyk}, title = {High-frequency cell vibrations and spatial skin effect in thick cascade junction with heavy concentrated masses}, journal = {Comptes Rendus. M\'ecanique}, pages = {221--228}, publisher = {Elsevier}, volume = {342}, number = {4}, year = {2014}, doi = {10.1016/j.crme.2014.01.002}, language = {en}, }
TY - JOUR AU - Gregory A. Chechkin AU - Taras A. Mel'nyk TI - High-frequency cell vibrations and spatial skin effect in thick cascade junction with heavy concentrated masses JO - Comptes Rendus. Mécanique PY - 2014 SP - 221 EP - 228 VL - 342 IS - 4 PB - Elsevier DO - 10.1016/j.crme.2014.01.002 LA - en ID - CRMECA_2014__342_4_221_0 ER -
%0 Journal Article %A Gregory A. Chechkin %A Taras A. Mel'nyk %T High-frequency cell vibrations and spatial skin effect in thick cascade junction with heavy concentrated masses %J Comptes Rendus. Mécanique %D 2014 %P 221-228 %V 342 %N 4 %I Elsevier %R 10.1016/j.crme.2014.01.002 %G en %F CRMECA_2014__342_4_221_0
Gregory A. Chechkin; Taras A. Mel'nyk. High-frequency cell vibrations and spatial skin effect in thick cascade junction with heavy concentrated masses. Comptes Rendus. Mécanique, Volume 342 (2014) no. 4, pp. 221-228. doi : 10.1016/j.crme.2014.01.002. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2014.01.002/
[1] Perturbation of eigenvalues in thermo-elasticity and vibration of systems with concentrated masses, Trends and Applications of Pure Mathematics to Mechanics, Lect. Notes Phys., vol. 195, Springer-Verlag, 1984, pp. 346-368
[2] Asymptotics of eigenelements to spectral problem in thick cascade junction with concentrated masses, Appl. Anal., Volume 91 (2012) no. 6, pp. 1055-1095 | DOI
[3] Spatial-skin effect for eigenvibrations of a thick cascade junction with “heavy” concentrated masses, Math. Methods Appl. Sci., Volume 37 (2014) no. 1, pp. 56-74 | DOI
[4] A skin effect for systems with many concentrated masses, C. R. Acad. Sci. Paris, Ser. IIb, Volume 327 (1999), pp. 771-776
[5] Local problems for vibrating systems with concentrated masses: a review, C. R. Acad. Sci. Paris, Ser. IIb, Volume 331 (2003), pp. 303-317
[6] Perturbation of the eigenvalues of a membrane with concentrated mass, Q. Appl. Math., Volume 47 (1989), pp. 93-103
[7] On vibration of a membrane with concentrated masses, Bull. Sci. Math., Volume 115 (1991) no. 2, pp. 1-27
[8] Asymptotic expansion of eigenvalues and eigenfunctions of an elliptic operator in a domain with many “light” concentrated masses situated on the boundary. Two-dimensional case, Izv. Math., Volume 69 (2005) no. 4, pp. 805-846 (transl. from: Izv. RAN Ser. Mat., 69, 4, 2005, pp. 161-204)
[9] Vibrations of a thick periodic junction with concentrated masses, Math. Models Methods Appl. Sci., Volume 11 (2001) no. 6, pp. 1001-1029
[10] Mathematical Problems in Elasticity and Homogenization, North-Holland, Amsterdam, 1992 (Russian edition: MGU, Moscow, 1990)
[11] New asymptotic effects for the spectrum of problems on concentrated masses near the boundary, C. R. Acad. Sci. Paris, Ser. IIb, Volume 337 (2009), pp. 585-590
[12] Matching of Asymptotic Expansions of Solutions of Boundary Value Problems, Transl. Math. Monogr., vol. 102, American Mathematical Society, Providence, RI, USA, 1992
[13] Boundary-value problems for partial differential equations in non-smooth domains, Russ. Math. Surv., Volume 38 (1983) no. 2, pp. 1-86 (transl. from: Usp. Mat. Nauk, 38, 2, 1983, pp. 3-76)
[14] Homogenization of the Poisson equation in a thick periodic junction, Z. Anal. Anwend., Volume 18 (1999) no. 4, pp. 953-975
[15] Scheme of investigation of the spectrum of a family of perturbed operators and its application to spectral problems in thick junctions, Nonlinear Oscil., Volume 6 (2003) no. 2, pp. 232-249
[16] Asymptotic analysis of a spectral problem in a periodic thick junction of type 3:2:1, Math. Methods Appl. Sci., Volume 23 (2000), pp. 321-346
[17] Regular degeneration and boundary layer for linear differential equations with small parameter, Transl. Amer. Math. Soc., Ser. 2, Volume 20 (1962) no. 5, pp. 239-364 transl. from: Usp. Mat. Nauk, 12, 1957, pp. 3-122 (in Russian)
Cited by Sources:
Comments - Policy