[Vibrations cellulaires de haute fréquence et effet spatial « peau » dans une jonction cascade épaisse avec des masses lourdes concentrées]
Nous étudions le comportement asymptotique des valeurs et fonctions propres du laplacien dans une jonction cascade épaisse bidimensionnelle, avec des masses lourdes concentrées. Si
We study the asymptotic behavior of eigenvalues and eigenfunctions of the Laplacian in a 2D thick cascade junction with heavy concentrated masses. We present two-term asymptotic approximations, as
Accepté le :
Publié le :
Mots-clés : Développement asymptotique, Problème spectral, Jonction cascade épaisse, Domaine avec oscillation forte du bord, Masses concentrées
Gregory A. Chechkin 1 ; Taras A. Mel'nyk 2
@article{CRMECA_2014__342_4_221_0, author = {Gregory A. Chechkin and Taras A. Mel'nyk}, title = {High-frequency cell vibrations and spatial skin effect in thick cascade junction with heavy concentrated masses}, journal = {Comptes Rendus. M\'ecanique}, pages = {221--228}, publisher = {Elsevier}, volume = {342}, number = {4}, year = {2014}, doi = {10.1016/j.crme.2014.01.002}, language = {en}, }
TY - JOUR AU - Gregory A. Chechkin AU - Taras A. Mel'nyk TI - High-frequency cell vibrations and spatial skin effect in thick cascade junction with heavy concentrated masses JO - Comptes Rendus. Mécanique PY - 2014 SP - 221 EP - 228 VL - 342 IS - 4 PB - Elsevier DO - 10.1016/j.crme.2014.01.002 LA - en ID - CRMECA_2014__342_4_221_0 ER -
%0 Journal Article %A Gregory A. Chechkin %A Taras A. Mel'nyk %T High-frequency cell vibrations and spatial skin effect in thick cascade junction with heavy concentrated masses %J Comptes Rendus. Mécanique %D 2014 %P 221-228 %V 342 %N 4 %I Elsevier %R 10.1016/j.crme.2014.01.002 %G en %F CRMECA_2014__342_4_221_0
Gregory A. Chechkin; Taras A. Mel'nyk. High-frequency cell vibrations and spatial skin effect in thick cascade junction with heavy concentrated masses. Comptes Rendus. Mécanique, Volume 342 (2014) no. 4, pp. 221-228. doi : 10.1016/j.crme.2014.01.002. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2014.01.002/
[1] Perturbation of eigenvalues in thermo-elasticity and vibration of systems with concentrated masses, Trends and Applications of Pure Mathematics to Mechanics, Lect. Notes Phys., vol. 195, Springer-Verlag, 1984, pp. 346-368
[2] Asymptotics of eigenelements to spectral problem in thick cascade junction with concentrated masses, Appl. Anal., Volume 91 (2012) no. 6, pp. 1055-1095 | DOI
[3] Spatial-skin effect for eigenvibrations of a thick cascade junction with “heavy” concentrated masses, Math. Methods Appl. Sci., Volume 37 (2014) no. 1, pp. 56-74 | DOI
[4] A skin effect for systems with many concentrated masses, C. R. Acad. Sci. Paris, Ser. IIb, Volume 327 (1999), pp. 771-776
[5] Local problems for vibrating systems with concentrated masses: a review, C. R. Acad. Sci. Paris, Ser. IIb, Volume 331 (2003), pp. 303-317
[6] Perturbation of the eigenvalues of a membrane with concentrated mass, Q. Appl. Math., Volume 47 (1989), pp. 93-103
[7] On vibration of a membrane with concentrated masses, Bull. Sci. Math., Volume 115 (1991) no. 2, pp. 1-27
[8] Asymptotic expansion of eigenvalues and eigenfunctions of an elliptic operator in a domain with many “light” concentrated masses situated on the boundary. Two-dimensional case, Izv. Math., Volume 69 (2005) no. 4, pp. 805-846 (transl. from: Izv. RAN Ser. Mat., 69, 4, 2005, pp. 161-204)
[9] Vibrations of a thick periodic junction with concentrated masses, Math. Models Methods Appl. Sci., Volume 11 (2001) no. 6, pp. 1001-1029
[10] Mathematical Problems in Elasticity and Homogenization, North-Holland, Amsterdam, 1992 (Russian edition: MGU, Moscow, 1990)
[11] New asymptotic effects for the spectrum of problems on concentrated masses near the boundary, C. R. Acad. Sci. Paris, Ser. IIb, Volume 337 (2009), pp. 585-590
[12] Matching of Asymptotic Expansions of Solutions of Boundary Value Problems, Transl. Math. Monogr., vol. 102, American Mathematical Society, Providence, RI, USA, 1992
[13] Boundary-value problems for partial differential equations in non-smooth domains, Russ. Math. Surv., Volume 38 (1983) no. 2, pp. 1-86 (transl. from: Usp. Mat. Nauk, 38, 2, 1983, pp. 3-76)
[14] Homogenization of the Poisson equation in a thick periodic junction, Z. Anal. Anwend., Volume 18 (1999) no. 4, pp. 953-975
[15] Scheme of investigation of the spectrum of a family of perturbed operators and its application to spectral problems in thick junctions, Nonlinear Oscil., Volume 6 (2003) no. 2, pp. 232-249
[16] Asymptotic analysis of a spectral problem in a periodic thick junction of type 3:2:1, Math. Methods Appl. Sci., Volume 23 (2000), pp. 321-346
[17] Regular degeneration and boundary layer for linear differential equations with small parameter, Transl. Amer. Math. Soc., Ser. 2, Volume 20 (1962) no. 5, pp. 239-364 transl. from: Usp. Mat. Nauk, 12, 1957, pp. 3-122 (in Russian)
- Random Homogenization in a Domain with Light Concentrated Masses, Mathematics, Volume 8 (2020) no. 5, p. 788 | DOI:10.3390/math8050788
- Eigenvibrations of thick cascade junctions with `very heavy' concentrated masses, Izvestiya: Mathematics, Volume 79 (2015) no. 3, p. 467 | DOI:10.1070/im2015v079n03abeh002751
- Собственные колебания густых каскадных соединений со "сверхтяжелыми" концентрированными массами, Известия Российской академии наук. Серия математическая, Volume 79 (2015) no. 3, p. 41 | DOI:10.4213/im8238
Cité par 3 documents. Sources : Crossref
Commentaires - Politique
Vous devez vous connecter pour continuer.
S'authentifier