Comptes Rendus
Numerical prediction of soil compaction in geotechnical engineering
Comptes Rendus. Mécanique, Volume 342 (2014) no. 3, pp. 208-219.

Soil compaction involves a reduction in volume of the soil mass instead of settlement, which has been considered as one of the most important methods to increase geomaterials' strength in geotechnical engineering practice. This paper presents a numerical model to simulate soil compaction using the finite-element method with finite deformation. The fundamental formulations for soil compaction are introduced first. Then the model is employed to simulate the compaction process and predict spatial density, in which the soil is modeled as elastoplastic material. The Drucker–Prager/Cap model is integrated in the large-deformation finite-element code and used to model the gradual compaction process of soil. Representative simulations of practical applications in geotechnical/pavement engineering are provided to demonstrate the feasibility of predicting soil compaction density using the proposed large-deformation finite-element model.

Published online:
DOI: 10.1016/j.crme.2014.01.007
Keywords: Soil compaction, Large deformation, Finite element, Spatial density

Kaiming Xia 1

1 Shell Exploration & Production Company, 3333 Highway 6 S, Houston, TX 77001-0481, USA
@article{CRMECA_2014__342_3_208_0,
     author = {Kaiming Xia},
     title = {Numerical prediction of soil compaction in geotechnical engineering},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {208--219},
     publisher = {Elsevier},
     volume = {342},
     number = {3},
     year = {2014},
     doi = {10.1016/j.crme.2014.01.007},
     language = {en},
}
TY  - JOUR
AU  - Kaiming Xia
TI  - Numerical prediction of soil compaction in geotechnical engineering
JO  - Comptes Rendus. Mécanique
PY  - 2014
SP  - 208
EP  - 219
VL  - 342
IS  - 3
PB  - Elsevier
DO  - 10.1016/j.crme.2014.01.007
LA  - en
ID  - CRMECA_2014__342_3_208_0
ER  - 
%0 Journal Article
%A Kaiming Xia
%T Numerical prediction of soil compaction in geotechnical engineering
%J Comptes Rendus. Mécanique
%D 2014
%P 208-219
%V 342
%N 3
%I Elsevier
%R 10.1016/j.crme.2014.01.007
%G en
%F CRMECA_2014__342_3_208_0
Kaiming Xia. Numerical prediction of soil compaction in geotechnical engineering. Comptes Rendus. Mécanique, Volume 342 (2014) no. 3, pp. 208-219. doi : 10.1016/j.crme.2014.01.007. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2014.01.007/

[1] T. Eguchi; T. Muro Measurement of compacted soil density in a compaction of thick finishing layer, J. Terramech., Volume 44 (2007), pp. 347-353

[2] S. Kimmel; M. Mooney Real-time soil compaction monitoring through pad strain measurements, San Diego, CA, USA (2011)

[3] D. Pietzsch; W. Poppy Simulation of soil compaction with vibratory roller, J. Terramech., Volume 29 (1992), pp. 585-597

[4] D. Montgomery, School of Engineering, University of Warwick, UK, 1999 (Stabilized soil research progress report SSRPR06)

[5] E. Canillas; V. Salokhe Modeling compaction in agricultural soils, J. Terramech., Volume 39 (2002), pp. 71-84

[6] F.H. Lee; T. Gu Method for estimating dynamic compaction effect on sand, J. Geotech. Geoenviron. Eng., Volume 130 (2004), pp. 139-152

[7] K. Carman Prediction of soil compaction under pneumatic tires using fuzzy logic approach, J. Terramech., Volume 45 (2008), pp. 103-108

[8] K. Xia; L. Chi A viscoplastic foam model for prediction of asphalt pavement compaction, ASCE Geotechnical Special Publication Series, vol. 182, 2008, pp. 136-145

[9] H. Brandl, F. Kopf, D. Adam, Continuous compaction control (CCC) with different dynamic rollers, Heft 553, ISSN 0379-1491, Wien, Austria, 2005.

[10] K. Mahutka; J. Grabe Numerical investigation of soil compaction and vibration propagation due to strong dynamic excitation, Baton Rouge, LA, USA (2005)

[11] T.J.R. Hughes; J. Winget Finite rotation effects in numerical integration of rate constitutive equations arising in large-deformation analysis, Int. J. Numer. Methods Eng., Volume 33 (1980), pp. 1413-1449

[12] J.C. Simo; T.J.R. Hughes Computational Inelasticity, Springer-Verlag, 1993

[13] T. Belytschko; W.K. Liu; B. Moran Nonlinear Finite Elements for Continua and Structure, John Wiley & Sons Ltd., 2000

[14] L.M. Taylor; E.B. Becker Some computational aspects of large deformation, rate-dependent plasticity problems, Comput. Methods Appl. Mech. Eng., Volume 41 (1983), pp. 251-277

[15] C.C. Swan; Y.K. Seo A Smooth Three-Surface Elasto-Plastic Cap Model: Rate Formulation, Integration Algorithm and Tangent Operators, University of Iowa, IA, USA, 2000

[16] R.L. Taylor, FEAP – A Finite Element Analysis Program, version 7.1, Programmer Manual, 1999.

[17] W.F. Chen; X.L. Liu, Elsevier (1990), pp. 1-24

[18] G. Hofstetter; J.C. Simo; R.L. Taylor A modified Cap model: closest point solution algorithm, Comput. Struct., Volume 46 (1993), pp. 202-214

[19] K. Xia; A. Masud A new stabilized finite-element method embedded with a Cap model for the analysis of granular material, J. Eng. Mech., Volume 132 (2006), pp. 250-259

Cited by Sources:

Comments - Policy