Comptes Rendus
Microstructural formulation of stress dilatancy
Comptes Rendus. Mécanique, Volume 342 (2014) no. 3, pp. 198-207.

In this work, we show that the well-known Rowe's stress-dilatancy relation can be readily recovered from a micromechanical analysis of an assembly of rigid particles as a purely dissipative system in the case of a regular packing. When the analysis is extended to a random packing, one can explicitly incorporate the dependence of fabric, density and stress level on dilatancy, a basic aspect of geomaterial behaviour. The resulting microstructurally based stress dilatancy relation can be easily implemented as a non-associated flow rule in any standard elastoplastic model. Some numerical simulations of stress-dilatancy with initial fabric as a controlling variable are presented to illustrate the developed model.

On démontre dans cet article la loi de dilatance de Rowe à partir d'une analyse micromécanique sur un assemblage régulier de particules rigides purement dissipatif. Dans le cas d'un assemblage aléatoire de particules, on peut faire apparaître dans l'écriture de la dilatance l'effet de la texture, de la densité et du niveau de contrainte, une caractéristique importante des géomatériaux. La loi de dilatance issue d'une analyse micromécanique entre dans un modèle élastoplastique par l'intermédiare d'une règle d'écoulement plastique non associée. Les différents aspects du modèle sont illustrés sur plusieurs exemples démontrant l'effet de la texture initiale sur la dilatance.

Published online:
DOI: 10.1016/j.crme.2014.01.005
Keywords: Stress-dilatancy, Fabric, Elastoplasticity, Micromechanics
Mot clés : Dilatance, Texture, Élastoplasticité, Micromécanique

Richard Wan 1; Peijun Guo 2

1 Department of Civil Engineering, University of Calgary, Calgary, Alberta, T2N 1N4, Canada
2 Department of Civil Engineering, McMaster University, Hamilton, Ontario, L8S 4L7, Canada
     author = {Richard Wan and Peijun Guo},
     title = {Microstructural formulation of stress dilatancy},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {198--207},
     publisher = {Elsevier},
     volume = {342},
     number = {3},
     year = {2014},
     doi = {10.1016/j.crme.2014.01.005},
     language = {en},
AU  - Richard Wan
AU  - Peijun Guo
TI  - Microstructural formulation of stress dilatancy
JO  - Comptes Rendus. Mécanique
PY  - 2014
SP  - 198
EP  - 207
VL  - 342
IS  - 3
PB  - Elsevier
DO  - 10.1016/j.crme.2014.01.005
LA  - en
ID  - CRMECA_2014__342_3_198_0
ER  - 
%0 Journal Article
%A Richard Wan
%A Peijun Guo
%T Microstructural formulation of stress dilatancy
%J Comptes Rendus. Mécanique
%D 2014
%P 198-207
%V 342
%N 3
%I Elsevier
%R 10.1016/j.crme.2014.01.005
%G en
%F CRMECA_2014__342_3_198_0
Richard Wan; Peijun Guo. Microstructural formulation of stress dilatancy. Comptes Rendus. Mécanique, Volume 342 (2014) no. 3, pp. 198-207. doi : 10.1016/j.crme.2014.01.005.

[1] O. Reynolds On the dilatancy of media composed of rigid particles in contact with experimental illustrations, Philos. Mag., Volume 5 (1885) no. 20, pp. 469-481

[2] P.W. Rowe The stress-dilatancy relation for static equilibrium of an assembly of particles in contact, Proc. R. Soc. Lond. Ser. A, Math. Phys. Sci., Volume 269 (1962), pp. 500-527

[3] J.D. Goddard; A.K. Didwania Computations of dilatancy and yield surfaces for assemblies of rigid frictional spheres, Q. J. Mech. Appl. Math., Volume 51 (1988) no. 1, pp. 14-43

[4] C.S. Chang; C.L. Liao Constitutive relation for a particulate medium with the effect of particle rotation, Int. J. Solids Struct., Volume 26 (1990) no. 4, pp. 437-453

[5] C.S. Chang; Y. Chang; M.G. Kabir Micromechanics modelling for stress-strain behaviour of granular soils, I: Theory, J. Geotech. Eng., Volume 118 (1992) no. 2, pp. 1959-1974

[6] C.S. Chang; J. Gao Second-gradient constitutive theory for granular material with random packing structure, Int. J. Solids Struct., Volume 32 (1995) no. 16, pp. 2279-2294

[7] C.S. Chang; P.-Y. Hicher An elastic–plastic model for granular materials with microstructural consideration, Int. J. Solids Struct., Volume 42 (2005) no. 14, pp. 4258-4277

[8] R.G. Wan; P.J. Guo A simple constitutive model for granular soils: Modified stress dilatancy approach, Comput. Geotech., Volume 22 (1998) no. 2, pp. 109-133

[9] R.G. Wan; P.J. Guo A pressure and density dependent dilatancy model for granular materials, Soil Found., Volume 39 (1999) no. 6, pp. 1-12

[10] X.S. Li; Y.F. Dafalias Dilatancy for cohesionless soils, Geotechnique, Volume 50 (2000) no. 4, pp. 449-460

[11] Y. Dafalias; M.T. Manzari Simple plasticity sand model accounting for fabric change effects, J. Eng. Mech., Volume 130 (2004) no. 6, pp. 635-645

[12] N. Balendran; S. Nemat-Nasser Double sliding model for cyclic deformation of granular materials, including dilatancy effects, J. Mech. Phys. Solids, Volume 41 (1993) no. 3, pp. 573-612

[13] R.G. Wan; P.J. Guo Effect of microstructure on undrained behaviour of sands, Can. Geotech. J., Volume 38 (2001), pp. 16-28

[14] R.G. Wan; P.J. Guo Drained cyclic behaviour of sand with fabric dependence, J. Eng. Mech., Volume 127 (2001) no. 11, pp. 1106-1116

[15] R.G. Wan; P.J. Guo Stress-dilatancy and fabric dependencies on sand behavior, J. Eng. Mech., Volume 130 (2004) no. 6, pp. 635-645

[16] P.J. Guo; R.G. Wan A rational approach to stress dilatancy modelling using an explicit micromechanical formulation (George E. Exadaktylos; Ioannis G. Vardoulakis, eds.), Bifurcations, Instabilities and Degradations in Geomaterials, Springer, 2007, pp. 201-230

[17] A.E.H. Love A Treatise of Mathematical Theory of Elasticity, Cambridge University Press, Cambridge, UK, 1927

[18] F. Emeriault; B. Cambou Micromechanical modelling of anisotropic non-linear elasticity of granular medium, Int. J. Solids Struct., Volume 33 (1996) no. 18, pp. 2591-2609

[19] F. Radjai; D. Wolf; M. Jean; J.-J. Moreau Bimodal character of stress transmission in granular packing, Phys. Rev. Lett., Volume 80 (1998) no. 1, pp. 61-64

[20] M. Oda; J. Konishi; S. Nemat-Nasser Experimental micromechanical evaluation of strength of granular materials: effects of particle rolling, Mech. Mater., Volume 1 (1982) no. 4, pp. 269-283

[21] J. Konishi; M. Oda; S. Nemat-Nasser Induced anisotropy in assemblies of oval cross-sectional rods in biaxial compression (J.T. Jenkins; M. Satake, eds.), Mechanics of Granular Materials: New Models and Constitutive Relations, Elsevier, Amsterdam, The Netherlands, 1983, pp. 31-39

[22] F. Calvetti; G. Combe; J. Lanier Experimental micromechanical analysis of a 2D granular material: relation between structure evolution and loading path, Mech. Cohes.-Frict. Mater., Volume 2 (1997), pp. 121-163

[23] F. Alonso-Marroquin; H.J. Herrmann; I. Vardoulakis Micromechanical Investigation of soil plasticity: An investigation using a discrete model of polygonal particles, Stuttgart, Germany (2004)

[24] L. Rothenburg; R.J. Bathurst Analytical study of induced anisotropy in idealized granular materials, Geotechnique, Volume 39 (1989) no. 4, pp. 601-614

[25] M. Satake Fabric tensors in granular materials, Delft, The Netherlands, 31 August–3 September 1982 (P.A. Vermeer; H.J. Luger, eds.), Balkema, Rotterdam, The Netherlands (1982), pp. 63-68

[26] R.G. Wan; M. Pinheiro; P.J. Guo Elastoplastic modelling of diffuse instability response of geomaterials, Int. J. Numer. Anal. Methods Geomech., Volume 35 (2011) no. 2, pp. 140-160

[27] M. Oda Initial fabrics and their relations to mechanical properties of granular material, Soil Found., Volume 12 (1972) no. 1, pp. 17-36

[28] R.G. Wan; M. Pinheiro; A. Daouadji; M. Jrad; F. Darve Diffuse instabilities with transition to localization in loose granular materials, Int. J. Numer. Anal. Methods Geomech., Volume 37 (2012) no. 10, pp. 1292-1311

Cited by Sources:

Comments - Policy