In this work, we show that the well-known Rowe's stress-dilatancy relation can be readily recovered from a micromechanical analysis of an assembly of rigid particles as a purely dissipative system in the case of a regular packing. When the analysis is extended to a random packing, one can explicitly incorporate the dependence of fabric, density and stress level on dilatancy, a basic aspect of geomaterial behaviour. The resulting microstructurally based stress dilatancy relation can be easily implemented as a non-associated flow rule in any standard elastoplastic model. Some numerical simulations of stress-dilatancy with initial fabric as a controlling variable are presented to illustrate the developed model.
On démontre dans cet article la loi de dilatance de Rowe à partir d'une analyse micromécanique sur un assemblage régulier de particules rigides purement dissipatif. Dans le cas d'un assemblage aléatoire de particules, on peut faire apparaître dans l'écriture de la dilatance l'effet de la texture, de la densité et du niveau de contrainte, une caractéristique importante des géomatériaux. La loi de dilatance issue d'une analyse micromécanique entre dans un modèle élastoplastique par l'intermédiare d'une règle d'écoulement plastique non associée. Les différents aspects du modèle sont illustrés sur plusieurs exemples démontrant l'effet de la texture initiale sur la dilatance.
Mots-clés : Dilatance, Texture, Élastoplasticité, Micromécanique
Richard Wan 1; Peijun Guo 2
@article{CRMECA_2014__342_3_198_0, author = {Richard Wan and Peijun Guo}, title = {Microstructural formulation of stress dilatancy}, journal = {Comptes Rendus. M\'ecanique}, pages = {198--207}, publisher = {Elsevier}, volume = {342}, number = {3}, year = {2014}, doi = {10.1016/j.crme.2014.01.005}, language = {en}, }
Richard Wan; Peijun Guo. Microstructural formulation of stress dilatancy. Comptes Rendus. Mécanique, Micromechanics of granular materials – A tribute to Ching S. Chang, Volume 342 (2014) no. 3, pp. 198-207. doi : 10.1016/j.crme.2014.01.005. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2014.01.005/
[1] On the dilatancy of media composed of rigid particles in contact with experimental illustrations, Philos. Mag., Volume 5 (1885) no. 20, pp. 469-481
[2] The stress-dilatancy relation for static equilibrium of an assembly of particles in contact, Proc. R. Soc. Lond. Ser. A, Math. Phys. Sci., Volume 269 (1962), pp. 500-527
[3] Computations of dilatancy and yield surfaces for assemblies of rigid frictional spheres, Q. J. Mech. Appl. Math., Volume 51 (1988) no. 1, pp. 14-43
[4] Constitutive relation for a particulate medium with the effect of particle rotation, Int. J. Solids Struct., Volume 26 (1990) no. 4, pp. 437-453
[5] Micromechanics modelling for stress-strain behaviour of granular soils, I: Theory, J. Geotech. Eng., Volume 118 (1992) no. 2, pp. 1959-1974
[6] Second-gradient constitutive theory for granular material with random packing structure, Int. J. Solids Struct., Volume 32 (1995) no. 16, pp. 2279-2294
[7] An elastic–plastic model for granular materials with microstructural consideration, Int. J. Solids Struct., Volume 42 (2005) no. 14, pp. 4258-4277
[8] A simple constitutive model for granular soils: Modified stress dilatancy approach, Comput. Geotech., Volume 22 (1998) no. 2, pp. 109-133
[9] A pressure and density dependent dilatancy model for granular materials, Soil Found., Volume 39 (1999) no. 6, pp. 1-12
[10] Dilatancy for cohesionless soils, Geotechnique, Volume 50 (2000) no. 4, pp. 449-460
[11] Simple plasticity sand model accounting for fabric change effects, J. Eng. Mech., Volume 130 (2004) no. 6, pp. 635-645
[12] Double sliding model for cyclic deformation of granular materials, including dilatancy effects, J. Mech. Phys. Solids, Volume 41 (1993) no. 3, pp. 573-612
[13] Effect of microstructure on undrained behaviour of sands, Can. Geotech. J., Volume 38 (2001), pp. 16-28
[14] Drained cyclic behaviour of sand with fabric dependence, J. Eng. Mech., Volume 127 (2001) no. 11, pp. 1106-1116
[15] Stress-dilatancy and fabric dependencies on sand behavior, J. Eng. Mech., Volume 130 (2004) no. 6, pp. 635-645
[16] A rational approach to stress dilatancy modelling using an explicit micromechanical formulation (George E. Exadaktylos; Ioannis G. Vardoulakis, eds.), Bifurcations, Instabilities and Degradations in Geomaterials, Springer, 2007, pp. 201-230
[17] A Treatise of Mathematical Theory of Elasticity, Cambridge University Press, Cambridge, UK, 1927
[18] Micromechanical modelling of anisotropic non-linear elasticity of granular medium, Int. J. Solids Struct., Volume 33 (1996) no. 18, pp. 2591-2609
[19] Bimodal character of stress transmission in granular packing, Phys. Rev. Lett., Volume 80 (1998) no. 1, pp. 61-64
[20] Experimental micromechanical evaluation of strength of granular materials: effects of particle rolling, Mech. Mater., Volume 1 (1982) no. 4, pp. 269-283
[21] Induced anisotropy in assemblies of oval cross-sectional rods in biaxial compression (J.T. Jenkins; M. Satake, eds.), Mechanics of Granular Materials: New Models and Constitutive Relations, Elsevier, Amsterdam, The Netherlands, 1983, pp. 31-39
[22] Experimental micromechanical analysis of a 2D granular material: relation between structure evolution and loading path, Mech. Cohes.-Frict. Mater., Volume 2 (1997), pp. 121-163
[23] Micromechanical Investigation of soil plasticity: An investigation using a discrete model of polygonal particles, Stuttgart, Germany (2004)
[24] Analytical study of induced anisotropy in idealized granular materials, Geotechnique, Volume 39 (1989) no. 4, pp. 601-614
[25] Fabric tensors in granular materials, Delft, The Netherlands, 31 August–3 September 1982 (P.A. Vermeer; H.J. Luger, eds.), Balkema, Rotterdam, The Netherlands (1982), pp. 63-68
[26] Elastoplastic modelling of diffuse instability response of geomaterials, Int. J. Numer. Anal. Methods Geomech., Volume 35 (2011) no. 2, pp. 140-160
[27] Initial fabrics and their relations to mechanical properties of granular material, Soil Found., Volume 12 (1972) no. 1, pp. 17-36
[28] Diffuse instabilities with transition to localization in loose granular materials, Int. J. Numer. Anal. Methods Geomech., Volume 37 (2012) no. 10, pp. 1292-1311
Cited by Sources:
Comments - Policy