Comptes Rendus
Particle size and boundary geometry effects on the bulk friction coefficient of sheared granular materials in the inertial regime
Comptes Rendus. Mécanique, Micromechanics of granular materials – A tribute to Ching S. Chang, Volume 342 (2014) no. 3, pp. 151-155.

Glass beads of varying diameters (d=2,3,4, and 5 mm) are used to measure the ratio of shear-to-normal stress, or bulk friction coefficient, generated inside an annular shear cell at high shearing rates. The effects of the particle size, the solids concentration, and the shear rate are explored. It is found that (1) for a given particle size, the magnitude of the bulk friction coefficient decreases with increasing solids concentration, (2) for a given solids concentration, the bulk friction coefficient decreases with increasing particle size, and (3) the bulk friction coefficient is independent of the shear rate except for cases with low solids concentration, where it decreases with increasing shear rate. The boundary geometry is found to affect bulk friction only for dilute (low solids concentration) flows involving small particles.

Published online:
DOI: 10.1016/j.crme.2014.01.009
Keywords: Granular, Shear, Bulk friction, Size, Boundary effect

Andrés D. Orlando 1; Hayley H. Shen 2

1 Jenike & Johanson, Inc., 400 Business Park Drive, Tyngsboro, MA 01879, USA
2 Department of Civil and Environmental Engineering, Clarkson University, 8 Clarkson Ave., P.O. Box 5710, Potsdam, NY 13699-5710, USA
@article{CRMECA_2014__342_3_151_0,
     author = {Andr\'es D. Orlando and Hayley H. Shen},
     title = {Particle size and boundary geometry effects on the bulk friction coefficient of sheared granular materials in the inertial regime},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {151--155},
     publisher = {Elsevier},
     volume = {342},
     number = {3},
     year = {2014},
     doi = {10.1016/j.crme.2014.01.009},
     language = {en},
}
TY  - JOUR
AU  - Andrés D. Orlando
AU  - Hayley H. Shen
TI  - Particle size and boundary geometry effects on the bulk friction coefficient of sheared granular materials in the inertial regime
JO  - Comptes Rendus. Mécanique
PY  - 2014
SP  - 151
EP  - 155
VL  - 342
IS  - 3
PB  - Elsevier
DO  - 10.1016/j.crme.2014.01.009
LA  - en
ID  - CRMECA_2014__342_3_151_0
ER  - 
%0 Journal Article
%A Andrés D. Orlando
%A Hayley H. Shen
%T Particle size and boundary geometry effects on the bulk friction coefficient of sheared granular materials in the inertial regime
%J Comptes Rendus. Mécanique
%D 2014
%P 151-155
%V 342
%N 3
%I Elsevier
%R 10.1016/j.crme.2014.01.009
%G en
%F CRMECA_2014__342_3_151_0
Andrés D. Orlando; Hayley H. Shen. Particle size and boundary geometry effects on the bulk friction coefficient of sheared granular materials in the inertial regime. Comptes Rendus. Mécanique, Micromechanics of granular materials – A tribute to Ching S. Chang, Volume 342 (2014) no. 3, pp. 151-155. doi : 10.1016/j.crme.2014.01.009. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2014.01.009/

[1] R.A. Bagnold The flow of cohesionless grains in fluids, Philos. Trans. R. Soc. Lond. Ser. A, Volume 249 (1956), pp. 235-297

[2] R.A. Bagnold Experiments on a gravity-free dispersion of large solid spheres in a Newtonian fluid under shear, Proc. R. Soc. Lond. Ser. A, Math. Phys. Sci., Volume 225 (1954) no. 1160, pp. 49-63

[3] D.M. Hanes; D.L. Inman Experimental evaluation of a dynamic yield criterion for granular fluid flows, J. Geophys. Res., Volume 90 (1985) no. B5, pp. 3670-3674

[4] D.M. Hanes; D.L. Inman Observations of rapidly flowing granular-fluid materials, J. Fluid Mech., Volume 150 (1985), pp. 357-380

[5] A.D. Orlando; H.H. Shen Effect of particle size and boundary conditions on the measured shear stress in an annular shear cell, Granul. Matter, Volume 14 (2012) no. 3, pp. 423-431

[6] S.B. Savage; M. Sayed Stresses developed by dry cohesionless granular materials sheared in an annular shear cell, J. Fluid Mech., Volume 142 (1984), pp. 391-430

[7] A.D. Orlando; H.H. Shen Using the annular shear cell as a rheometer for rapidly sheared granular materials – a DEM study, Granul. Matter, Volume 15 (2013) no. 2, pp. 183-194

Cited by Sources:

Comments - Policy