Comptes Rendus
Analysis of local behaviour in granular materials
Comptes Rendus. Mécanique, Volume 342 (2014) no. 3, pp. 156-173.

A local scale, called the meso-scale, has recently been introduced to the multi-scale approach for 2D granular materials. This local scale is defined at the level of meso-domains enclosed by particles in contact. Stress and strain have been defined at this local scale, and their relation with the local structure has been studied. The purpose of this paper is to analyse the behaviour of granular materials at the meso-scale, i.e. the stress–strain–structure relationship at this scale. Analyses are performed on a 2D numerical granular sample subjected to a biaxial compression test and simulated with the Discrete Element Method (DEM). The sample is quite dense and it is loaded at a relatively low strain rate so that the state of the sample can be considered as being quasi-static. The size of sub-domains in the sample varies largely from 3 to 12 particles. It is shown that the evolution of the internal state of the sample corresponds, at the meso-scale, to a clear evolution of the quantity of meso-domains oriented in different directions. In addition, the behaviour of meso-domains is highly governed by their orientation rather than their density, especially for the strongly elongated meso-domains: the meso-domains oriented in the compression (resp. extension) direction behave like a dense (resp. loose) granular material.

Une échelle locale, appelée l'échelle mésoscopique, a été introduite récemment dans l'approche multi-échelles pour les matériaux granulaires 2D. Cette échelle est définie au niveau de sous domaines constitués de boucles fermées limitées par des particules en contacts. La contrainte et la déformation ont été définies à cette échelle, et leur relation avec la structure locale a été étudiée. L'objectif de cet article est d'analyser le comportement local des milieux granulaires à cette échelle, c'est-à-dire la relation entre contrainte, déformation et structure. Des analyses sont réalisées sur la simulation numérique, par la méthode des éléments discrets, d'un essai de compression biaxiale d'un échantillon de matériau granulaire 2D. L'échantillon considéré est relativement dense et la sollicitation est suffisamment lente pour que l'échantillon puisse être considéré dans un régime quasi statique. Le nombre de particules dans chaque sous-domaine varie de 3 à 12. Les analyses réalisées montrent que l'évolution de l'état interne de l'échantillon correspond à une évolution de la quantitié des sous-domaines orientés dans des directions différentes. De plus, le comportement des sous-domaines est fortement piloté par leur orientation, plutôt que par leur densité. Les sous-domaines orientés dans la direction de compression se comportent comme un matériau dense, tandis que ceux orientés dans la direction d'extension se comportent comme un matériau lâche.

Published online:
DOI: 10.1016/j.crme.2014.01.004
Keywords: Granular material, Multi-scale approach, Discrete element method, Meso-scale, Local behaviour
Mot clés : Matériaux granulaires, Approche multi-échelles, Méthode des éléments discrets, Échelle mésoscopique, Comportement local

Ngoc-Son Nguyen 1; Hélène Magoariec 1; Bernard Cambou 1

1 LTDS – UMR 5513, École centrale de Lyon, 36, avenue Guy-de-Collongue, 69134 Écully cedex, France
@article{CRMECA_2014__342_3_156_0,
     author = {Ngoc-Son Nguyen and H\'el\`ene Magoariec and Bernard Cambou},
     title = {Analysis of local behaviour in granular materials},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {156--173},
     publisher = {Elsevier},
     volume = {342},
     number = {3},
     year = {2014},
     doi = {10.1016/j.crme.2014.01.004},
     language = {en},
}
TY  - JOUR
AU  - Ngoc-Son Nguyen
AU  - Hélène Magoariec
AU  - Bernard Cambou
TI  - Analysis of local behaviour in granular materials
JO  - Comptes Rendus. Mécanique
PY  - 2014
SP  - 156
EP  - 173
VL  - 342
IS  - 3
PB  - Elsevier
DO  - 10.1016/j.crme.2014.01.004
LA  - en
ID  - CRMECA_2014__342_3_156_0
ER  - 
%0 Journal Article
%A Ngoc-Son Nguyen
%A Hélène Magoariec
%A Bernard Cambou
%T Analysis of local behaviour in granular materials
%J Comptes Rendus. Mécanique
%D 2014
%P 156-173
%V 342
%N 3
%I Elsevier
%R 10.1016/j.crme.2014.01.004
%G en
%F CRMECA_2014__342_3_156_0
Ngoc-Son Nguyen; Hélène Magoariec; Bernard Cambou. Analysis of local behaviour in granular materials. Comptes Rendus. Mécanique, Volume 342 (2014) no. 3, pp. 156-173. doi : 10.1016/j.crme.2014.01.004. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2014.01.004/

[1] K. Walton The effective moduli of a random packing of spheres, J. Mech. Phys. Solids, Volume 3 (1987) no. 35, pp. 213-226

[2] F. Emeriault; B. Cambou Micromechanical modelling of anisotropic non-linear elasticity of granular medium, Int. J. Solids Struct., Volume 33 (1996) no. 18, pp. 2591-2607

[3] K. Sab Une nouvelle approche de l'homogénéisation des milieux granulaires, Saint-Venant Symposium: Analyse multiéchelle et systèmes physiques couplés, Presses de l'École nationale des ponts et chausées, Paris, 1997

[4] C.L. Liao; T.P. Chang; D.H. Young; C.S. Chang Stress–strain relationships for granular materials based on the hypothesis of best-fit, Int. J. Solids Struct., Volume 34 (1997), pp. 4087-4100

[5] I. Goldhirsch; C. Goldenberg On the microscopic foundations of elasticity, Eur. Phys. J. E, Volume 9 (2002), pp. 245-251

[6] C.S. Chang; P.-H. Hicher An elasto-plastic model for granular materials with microstructural consideration, Int. J. Solids Struct., Volume 42 (2005) no. 14, pp. 4258-4277

[7] C.S. Chang; A. Misra Application of uniform strain theory to heterogeneous granular solids, J. Eng. Mech., Volume 116 (1990) no. 10, pp. 2310-2328

[8] B. Cambou; P. Dubujet; F. Emeriault; F. Sidoroff Homogenization for granular materials, Eur. J. Mech. A, Solids, Volume 14 (1995) no. 2, pp. 255-276

[9] F. Emeriault; C.S. Chang Interparticle forces and displacements in granular materials, Comput. Geotech., Volume 20 (1997) no. 3/4, pp. 223-244

[10] B. Cambou; M. Chaze; F. Dedecker Change of scale in granular materials, Eur. J. Mech. A, Solids, Volume 19 (2000) no. 6, pp. 999-1014

[11] K. Bagi Analysis of microstructural strain tensors for granular assemblies, Int. J. Solids Struct., Volume 43 (2006), pp. 3166-3184

[12] M. Satake A discrete-mechanical approach to granular materials, Int. J. Eng. Sci., Volume 30 (1992) no. 10, pp. 1525-1533

[13] N. Kruyt; L. Rothenburg Micromechanical definition of the strain tensor for granular materials, J. Appl. Mech., Volume 118 (1996), pp. 706-711

[14] M.R. Kuhn Deformation measures for granular materials, Mechanics of Deformation and Flow of Particulate Materials, ASCE, 1997, pp. 91-104

[15] O. Durán; N.P. Kruyt; S. Luding Analysis of three-dimensional micro-mechanical strain formulations for granular materials: evaluation of accuracy, Int. J. Solids Struct., Volume 47 (2010), pp. 251-260

[16] O. Durán; N.P. Kruyt; S. Luding Micro-mechanical analysis of deformation characteristics of three-dimensional granular materials, Int. J. Solids Struct., Volume 47 (2010), pp. 2234-2245

[17] N.S. Nguyen; H. Magoariec; B. Cambou; A. Danescu Analysis of structure and strain at the meso-scale in 2D granular materials, Int. J. Solids Struct., Volume 46 (2009), pp. 3257-3271

[18] N.S. Nguyen; H. Magoariec; B. Cambou Local stress analysis in granular materials at a meso-scale, Int. J. Numer. Anal. Methods Geomech., Volume 36 (2011) no. 14, pp. 1609-1635

[19] P.A. Cundall A computer model for simulating progressive large scale movements in blocky rock systems, Nancy, France (1971) 1(II-8)

[20] Itasca Consulting Group, Inc. PFC2D – Theory and Background, 1999

[21] T. Tsuchikura; M. Satake Statistical measure tensors and their application to computer simulation analysis of biaxial compression test (H. Murakami; J.E. Luco, eds.), Engineering Mechanics: A Force for 21st Century, ASCE, Reston, VA, 1998, pp. 1732-1735

[22] M.R. Kuhn Structured deformation in granular materials, Mech. Mater., Volume 31 (1999), pp. 407-429

[23] Z.P. Bazant; J. Ozbolt Non local microplane model for fracture, damage, and size effects in structures, J. Eng. Mech., Volume 116 (1990) no. 11, pp. 2485-2505

[24] K. Bagi Stress and strain in granular assemblies, Mech. Mater., Volume 22 (1996), pp. 165-177

[25] A. Casagrande Characteristics of cohesionless soils affecting the stability of slopes and earth fills, Contribution to Soil Mechanics 1925–1940, Boston Society of Civil Engineering, 1940, pp. 257-276

[26] D.W. Taylor Fundamentals of Soil Mechanics, John Wiley & Sons, 1948

[27] M.D. Bolton The strength and dilatancy of sands, Geotechnique, Volume 36 (1986) no. 1, pp. 65-78

[28] P.W. Rowe The stress–dilatancy relation for static equilibrium of an assembly of particles in contact, Proc. R. Soc. A, Math. Phys. Eng. Sci., Volume 269 (1962), pp. 500-572

Cited by Sources:

Comments - Policy