Comptes Rendus
Indentation-triggered pattern transformation in hyperelastic soft cellular solids
Comptes Rendus. Mécanique, Volume 342 (2014) no. 5, pp. 292-298.

This paper explores indentation-triggered microstructural instability in hyperelastic cellular solids through combined experimental, numerical, and theoretical efforts. The results demonstrate that when the indentation depth is greater than a critical value, local instability occurs and further propagates into a rectangular region beneath the indenter. The width of the rectangular region scales with the contact width, and we propose a simple scaling relation to estimate the maximum depth to which the instability can propagate based on the elastic contact theory. The results reported here may find such applications as in the integrity evaluation of soft cellular materials and structures and the development of advanced functional materials with unique optical, acoustic and wetting properties.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crme.2014.01.011
Mots clés : Hyperelastic cellular solid, Indentation, Pattern transformation
Ke-Lin Chen 1 ; Yan-Ping Cao 1 ; Man-Gong Zhang 1 ; Xi-Qiao Feng 1

1 Institute of Biomechanics and Medical Engineering, Department of Engineering Mechanics, Tsinghua University, Beijing, 100084, China
@article{CRMECA_2014__342_5_292_0,
     author = {Ke-Lin Chen and Yan-Ping Cao and Man-Gong Zhang and Xi-Qiao Feng},
     title = {Indentation-triggered pattern transformation in hyperelastic soft cellular solids},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {292--298},
     publisher = {Elsevier},
     volume = {342},
     number = {5},
     year = {2014},
     doi = {10.1016/j.crme.2014.01.011},
     language = {en},
}
TY  - JOUR
AU  - Ke-Lin Chen
AU  - Yan-Ping Cao
AU  - Man-Gong Zhang
AU  - Xi-Qiao Feng
TI  - Indentation-triggered pattern transformation in hyperelastic soft cellular solids
JO  - Comptes Rendus. Mécanique
PY  - 2014
SP  - 292
EP  - 298
VL  - 342
IS  - 5
PB  - Elsevier
DO  - 10.1016/j.crme.2014.01.011
LA  - en
ID  - CRMECA_2014__342_5_292_0
ER  - 
%0 Journal Article
%A Ke-Lin Chen
%A Yan-Ping Cao
%A Man-Gong Zhang
%A Xi-Qiao Feng
%T Indentation-triggered pattern transformation in hyperelastic soft cellular solids
%J Comptes Rendus. Mécanique
%D 2014
%P 292-298
%V 342
%N 5
%I Elsevier
%R 10.1016/j.crme.2014.01.011
%G en
%F CRMECA_2014__342_5_292_0
Ke-Lin Chen; Yan-Ping Cao; Man-Gong Zhang; Xi-Qiao Feng. Indentation-triggered pattern transformation in hyperelastic soft cellular solids. Comptes Rendus. Mécanique, Volume 342 (2014) no. 5, pp. 292-298. doi : 10.1016/j.crme.2014.01.011. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2014.01.011/

[1] M. Campbell; D.N. Sharp; M.T. Harrison; R.G. Denning; A.J. Turberfield Fabrication of photonic crystals for the visible spectrum by holographic lithography, Nature, Volume 404 (2000), p. 53

[2] G.M. Whitesides The origins and the future of microfluidics, Nature, Volume 442 (2006), p. 368

[3] K. Toohey; N. Sottos; J. Lewis; J. Moore; S. White Self-healing materials with microvascular networks, Nat. Mater., Volume 6 (2007), p. 581

[4] M. Ford; J. Bertram; S. Hynes; M. Michaud; Q. Li; M. Young; S. Segal; J. Madri; E. Lavik A macroporous hydrogel for the coculture of neural progenitor and endothelial cells to form functional vascular networks invivo, Proc. Natl. Acad. Sci. USA, Volume 103 (2006), p. 2512

[5] S. Hollister Nat. Mater., 4 (2005), p. 518

[6] S.Q. Cai; K. Bertoldi; H.M. Wang; Z.G. Suo Porous scaffold design for tissue engineering, Soft Matter, Volume 6 (2010), p. 5770

[7] T. Mullin; S. Deschanel; K. Bertoldi; M.C. Boyce Pattern transformation triggered by deformation, Phys. Rev. Lett., Volume 99 (2007), p. 084301

[8] L.J. Gibson; M.F. Ashby; G.S. Schajer; C.I. Robertson The mechanics of two-dimensional cellular materials, Proc. R. Soc. Lond. A, Volume 382 (1982), p. 25

[9] L.J. Gibson; M.F. Ashby Cellular Solids: Structure and Properties, Cambridge University Press, 1997

[10] D. Okumura; N. Ohno; H. Noguchi Post-buckling analysis of elastic honeycombs subject to in-plane biaxial compression, Int. J. Solids Struct., Volume 39 (2002), p. 3487

[11] J.C. Michel; O. Lopez-Pamies; P. Ponte Castaneda; N. Triantafyllidis Microscopic and macroscopic instabilities in finitely strained porous elastomers, J. Mech. Phys. Solids, Volume 55 (2007), p. 900

[12] K. Bertoldi; M.C. Boyce; S. Deschanel; S.M. Prange; T. Mullin Mechanics of deformation-triggered pattern transformations and superelastic behavior in periodic elastomeric structures, J. Mech. Phys. Solids, Volume 56 (2008), p. 2642

[13] K.L. Johnson Contact Mechanics, Cambridge University Press, Cambridge, UK, 1985

[14] V. Karageorgiou; D. Kaplan Porosity of 3D biomaterial scaffolds and osteogenesis, Biomaterials, Volume 26 (2005), p. 5474

[15] W.C. Oliver; G.M. Pharr Measurement of hardness and elastic modulus by instrumented indentation: advances in understanding and refinements to methodology, J. Mater. Res., Volume 19 (2004), p. 3

[16] S. Zankovych; T. Hoffmann; J. Seekamp; J.-U. Bruch; C.M. Sotomayor Torres Nanoimprint lithography: challenges and prospects, Nanotechnology, Volume 12 (2001), p. 91

[17] N. Fleck; H. Otoyo; A. Needleman Indentation of porous solids, Int. J. Solids Struct., Volume 29 (1992), p. 1613

[18] M. Wilsea; K.L. Johnson; M.F. Ashby Indentation of foamed plastics, Int. J. Mech. Sci., Volume 17 (1975), p. 457

[19] K. Hibbit, ABAQUS analysis user's manual, 2008, Version 6.8.

[20] G.I. Barenblatt Scaling, Self-similarity and Intermediate Asymptotics, Cambridge University Press, Cambridge, UK, 1996

[21] N. Stoop; F.K. Wittel; M. Ben Amar; M.M. Muller; H.J. Herrmann Self-contact and instabilities in the anisotropic growth of elastic membranes, Phys. Rev. Lett., Volume 105 (2010), p. 068101

[22] B. Li; F. Jia; Y.P. Cao; X.Q. Feng; H. Gao Surface wrinkling patterns on a core-shell soft sphere, Phys. Rev. Lett., Volume 106 (2011), p. 234301

[23] Y.P. Cao; J.W. Hutchinson From wrinkles to creases in elastomers: the instability and imperfection-sensitivity of wrinkling, Proc. R. Soc. A, Volume 468 (2012), p. 94

[24] L.J. Gibson Biomechanics of cellular solids, J. Biomech., Volume 38 (2005), p. 377

[25] J. Biener; A.M. Hodge; A.V. Hamza; L.M. Hsiung; J.H. Satcher Nanoporous Au: a high yield strength material, J. Appl. Phys., Volume 97 (2005), p. 024301

[26] T. Aoki; T. Ohashi; T. Matsumoto; M. Sato The pipette aspiration applied to the local stiffness measurement of soft tissues, Ann. Biomed. Eng., Volume 25 (1997), p. 581

[27] M.G. Zhang; Y.P. Cao; G.Y. Li; X.Q. Feng Pipette aspiration of hyperelastic compliant materials: theoretical analysis, simulations and experiments, J. Mech. Phys. Solids (2014) (in press)

Cité par Sources :

Commentaires - Politique


Ces articles pourraient vous intéresser

Analysis methods and size effects in the indentation fracture toughness assessment of very thin oxide coatings on glass

Steve J. Bull

C. R. Méca (2011)


An approximate solution to the problem of cone or wedge indentation of elastoplastic solids

Guillaume Kermouche; Jean-Luc Loubet; Jean-Michel Bergheau

C. R. Méca (2005)


Multiscale modelling of indentation in FCC metals: From atomic to continuum

Hyung-Jun Chang; Marc Fivel; David Rodney; ...

C. R. Phys (2010)