Comptes Rendus
Experimental investigation and modelling of compressibility induced by damage in carbon black-reinforced natural rubber
Comptes Rendus. Mécanique, Frontiers of micro and nanomechanics of materials: Soft or amorphous matter, surface effects, Volume 342 (2014) no. 5, pp. 299-310.

While natural rubber is commonly considered as an incompressible material, this study shows how carbon black-reinforced natural rubber (NR-CB), when subjected to various mechanical loading conditions (uniaxial, hydrostatic, monotonic, cyclic), is affected by volume change. Experiments show a volume variation even for low straining values and a significant volume change for large elongations. Moreover, volume change can be either reversible or not, depending on the loading conditions. It is related to a competition between void growth, chain orientation, and stress softening. At a microscopic scale, in situ Scanning Electron Microscopy (SEM) examinations and image analysis allow one to record damage and microscopic volume change as a function of elongation. Therefore the volume change measured at the microscopic scale is equal to the macroscopic one. Based on the experimental results, this paper shows that the hypothesis of incompressibility is worth being revisited. Thus, a nearly compressible approach was considered, where the strain energy is assumed to be the sum of spherical and deviatoric parts that are both affected by damage. The model was then implemented in a finite-element code. Good agreement was obtained between experimental results and model predictions for low triaxiality test conditions.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crme.2014.02.005
Mots-clés : Rubber, Compressibility, Cavitation, Damage, Constitutive behaviour, Finite element method

Sabine Cantournet 1 ; Khaled Layouni 1 ; Lucien Laiarinandrasana 1 ; Roland Piques 1

1 Centre des matériaux, CNRS UMR 7633, MINES ParisTech, BP 87, 91003 Évry cedex, France
@article{CRMECA_2014__342_5_299_0,
     author = {Sabine Cantournet and Khaled Layouni and Lucien Laiarinandrasana and Roland Piques},
     title = {Experimental investigation and modelling of compressibility induced by damage in carbon black-reinforced natural rubber},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {299--310},
     publisher = {Elsevier},
     volume = {342},
     number = {5},
     year = {2014},
     doi = {10.1016/j.crme.2014.02.005},
     language = {en},
}
TY  - JOUR
AU  - Sabine Cantournet
AU  - Khaled Layouni
AU  - Lucien Laiarinandrasana
AU  - Roland Piques
TI  - Experimental investigation and modelling of compressibility induced by damage in carbon black-reinforced natural rubber
JO  - Comptes Rendus. Mécanique
PY  - 2014
SP  - 299
EP  - 310
VL  - 342
IS  - 5
PB  - Elsevier
DO  - 10.1016/j.crme.2014.02.005
LA  - en
ID  - CRMECA_2014__342_5_299_0
ER  - 
%0 Journal Article
%A Sabine Cantournet
%A Khaled Layouni
%A Lucien Laiarinandrasana
%A Roland Piques
%T Experimental investigation and modelling of compressibility induced by damage in carbon black-reinforced natural rubber
%J Comptes Rendus. Mécanique
%D 2014
%P 299-310
%V 342
%N 5
%I Elsevier
%R 10.1016/j.crme.2014.02.005
%G en
%F CRMECA_2014__342_5_299_0
Sabine Cantournet; Khaled Layouni; Lucien Laiarinandrasana; Roland Piques. Experimental investigation and modelling of compressibility induced by damage in carbon black-reinforced natural rubber. Comptes Rendus. Mécanique, Frontiers of micro and nanomechanics of materials: Soft or amorphous matter, surface effects, Volume 342 (2014) no. 5, pp. 299-310. doi : 10.1016/j.crme.2014.02.005. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2014.02.005/

[1] W.F. Busse Physics of rubber as related to the automobile, J. Appl. Phys., Volume 9 (1938), p. 438

[2] F.L. Yerzley Adhesion of neoprene to metal, Ind. Eng. Chem., Volume 31 (1939), pp. 950-956

[3] A.N. Gent; P.B. Lindley Internal rupture of bonded rubber cylinders in tension, Proc. R. Soc. A, Volume 249 (1958), pp. 195-205

[4] A.N. Gent; D.A. Tompkins Nucleation and growth of gas bubbles in elastomers, J. Appl. Phys., Volume 40 (1969), pp. 2520-2525

[5] K. Cho; A.N. Gent Cavitation in model elastomeric components, J. Mater. Sci., Volume 23 (1988), pp. 141-144

[6] A.N. Gent; C. Wang Physics of rubber as related to the automobile, J. Appl. Phys., Volume 9 (1990), pp. 3392-3395

[7] S.L. Burtscher; A. Dorfmann Experimental and computational aspects of cavitation in natural rubber (A. Dorfmann; A. Muhr, eds.), Constitutive Models for Rubber, Balkema, Rotterdam, The Netherlands, 1999, pp. 201-209

[8] A. Dorfmann; R.W. Ogden Stress softening in rubber-like solids subjected to cavitation damage (D. Besdo; R.H. Schuster; J. Ihlemann, eds.), Constitutive Models for Rubber II, 2001, pp. 193-203

[9] A. Dorfmann; K.N.G. Fuller; R.W. Ogden Shear, compressive and dilatational response of rubber-like solids subject to cavitation damage, Int. J. Solids Struct., Volume 39 (2002), pp. 1845-1861

[10] A.N. Gent Crystallization and the relaxation of stress in stretched natural rubber vulcanizates, Trans. Faraday Soc., Volume 50 (1954), pp. 521-533

[11] N. Bekkedahl Forms of rubber as indicated by temperature–volume relationship, J. Res. Natl. Bur. Stand., Volume 13 (1934), p. 410

[12] L.A. Wood; N. Bekkedahl Crystallization of unvulcanized rubber at different temperatures, J. Appl. Phys., Volume 17 (1946), pp. 362-375

[13] Y. Pannier; H. Proudhon; C. Mocuta; D. Thiaudière; S. Cantournet In situ multiaxial loading frame to probe elastomers using X-ray scattering, J. Synchrotron Radiat., Volume 18 (2011), pp. 907-911

[14] C. G'Sell; J.-M. Hiver; A. Dahoun Experimental characterisation of deformation damage in solid polymers under tension and its interrelation with necking, Int. J. Solids Struct., Volume 39 (2002), pp. 3857-3872

[15] K. Le Gorju Jago X-ray computed microtomography of rubber, Rubber Chem. Technol., Volume 85 (2012) no. 3, pp. 387-407

[16] K. Layouni; S. Cantournet; L. Laiarinandrasana; R. Piques Compressibility induced by damage in carbon black reinforced natural rubber, ECCMR IV, Proceedings of the Fourth Conference on Constitutive Models for Rubber, 2007

[17] F. Andrieux Sur les milieux visco-hyperélastiques endommageables, Université de technologie de Compiègne, France, 1996 Ph.D. thesis (in French)

[18] P.J. Flory Thermodynamic relations for high elastic materials, Trans. Faraday Soc., Volume 57 (1961), pp. 829-838

[19] J.C. Simo; R.L. Taylor Quasi-incompressible finite elasticity in principal stretches. Continuum basis and numerical algorithms, Comput. Methods Appl. Mech. Eng., Volume 85 (1991), pp. 273-310

[20] R.W. Penn Volume changes accompanying the extension of rubber, Trans. Soc. Rheol., Volume 40 (1970) no. 4, pp. 509-517

[21] D. Doll; K. Schweizerhof On the development of volumetric strain energy functions, J. Appl. Mech, Volume 67 (2000), pp. 17-21

[22] P. Germain; Q.S. Nguyen; P. Suquet Continuum thermodynamics, J. Appl. Mech., Volume 105 (1983), pp. 1010-1020

[23] J. Besson; R. Foerch Large scale object-oriented finite element code design, Comput. Methods Appl. Mech. Eng., Volume 142 (1997), pp. 165-187

[24] J. Besson; G. Cailletaud; J.-L. Chaboche; S. Forest Mécanique non linéaire des matériaux, Hermès Science Publications, Paris, 2001 (in French)

[25] A. Jean; S. Forest; F. Willot; S. Cantournet; D. Jeulin Large-scale computations of effective mechanical properties of rubber with carbon black fillers, Int. J. Multiscale Comput. Eng., Volume 9 (2011) no. 3, pp. 271-303

[26] A. Jean; D. Jeulin; S. Forest; S. Cantournet; F. N'Guyen A multi-scale microstructure model of carbon black distribution in rubber, J. Microsc., Volume 241 (2011) no. 3, pp. 243-260

[27] K. Saanouni; F. Sidoroff; F. Andrieux Damage hyperelastic solid with an induced volume variation. Effect of loading paths (G.Z. Voyiadjis; J.W. Ju; J.-L. Chaboche, eds.), Damage Mechanics in Engineering Materials, Elsevier, 1998, pp. 503-522

[28] N. Saintier Prévision de la durée de vie en fatigue du NR, sous chargement multiaxial, École nationale supérieure des mines de Paris, Paris, France, 2001 Ph.D. thesis (in French)

  • Poushali Das; Sayan Ganguly; Parham Khoshbakht Marvi; Masoomeh Sherazee; Syed Rahin Ahmed; Xiaowu (Shirley) Tang; Seshasai Srinivasan; Amin Reza Rajabzadeh Borophene Based 3D Extrusion Printed Nanocomposite Hydrogel for Antibacterial and Controlled Release Application, Advanced Functional Materials, Volume 34 (2024) no. 21 | DOI:10.1002/adfm.202314520
  • Buddhima Indraratna; Yujie Qi; Cholachat Rujikiatkamjorn; Miriam Tawk; Fatima Mehmood; Sinniah K. Navaratnarajah; Tim Neville; Jim Grant Smart Solutions in a Circular Economy for Advancing Railroad Design and Construction Using Recycled Materials, Geotechnical Lessons Learnt—Building and Transport Infrastructure Projects, Volume 325 (2023), p. 1 | DOI:10.1007/978-981-99-1121-9_1
  • Carlos Eloy Federico; Yves Fleming; Ondřej Kotecký; Robert Rommel; Adrian-Marie Philippe; Stephan Westermann; Frédéric Addiego Assessment of strain-induced cavitation of silica-filled styrene-butadiene rubber nanocomposite by synchrotron radiation tomography, Composites Part B: Engineering, Volume 247 (2022), p. 110337 | DOI:10.1016/j.compositesb.2022.110337
  • Mehmet Çalışkan Experimental Investigation of the Performance of SBR and RSS Materials as a Sliding Bearing Element, Crystals, Volume 12 (2022) no. 9, p. 1254 | DOI:10.3390/cryst12091254
  • Xin Wang Experimental Study on the Effect of Hardness on the Erosion Resistance of Coatings and Rubber for Hydropower Applications, Journal of Testing and Evaluation, Volume 49 (2021) no. 5, p. 3389 | DOI:10.1520/jte20180775
  • C.E. Federico; H.R. Padmanathan; O. Kotecký; R. Rommel; G. Rauchs; Y. Fleming; F. Addiego Resolving cavitation in silica-filled styrene-butadiene rubber composites upon cyclic tensile testing, Polymer Testing, Volume 100 (2021), p. 107274 | DOI:10.1016/j.polymertesting.2021.107274
  • C.E. Federico; G. Rauchs; O. Kotecky; S. Westermann; F. Addiego Cavitation in thermoplastic-reinforced rubber composites upon cyclic testing: Multiscale characterization and modelling, Polymer, Volume 211 (2020), p. 123084 | DOI:10.1016/j.polymer.2020.123084
  • Nicolas Candau; Oguzhan Oguz; Edith Peuvrel-Disdier; Jean-Luc Bouvard; María Lluïsa Maspoch; Guillaume Corvec; Christophe Pradille; Noëlle Billon Effect of the Strain Rate on Damage in Filled EPDM during Single and Cyclic Loadings, Polymers, Volume 12 (2020) no. 12, p. 3021 | DOI:10.3390/polym12123021
  • V.K. Devendiran; K.V. Mohankumar; K. Kannan; Bijo T Varkey Validation of a thermodynamically consistent compressible rate-type viscoelastic model with independent limits on dilation, contraction, and distortion, International Journal of Non-Linear Mechanics, Volume 116 (2019), p. 85 | DOI:10.1016/j.ijnonlinmec.2019.06.002
  • Reza Pourmodheji; Shaoxing Qu; Honghui Yu Energy-Based Strength Theory for Soft Elastic Membranes, Journal of Applied Mechanics, Volume 86 (2019) no. 7 | DOI:10.1115/1.4043145
  • Arne Ilseng; Bjørn H. Skallerud; Arild H. Clausen Volume growth during uniaxial tension of particle-filled elastomers at various temperatures – Experiments and modelling, Journal of the Mechanics and Physics of Solids, Volume 107 (2017), p. 33 | DOI:10.1016/j.jmps.2017.06.014
  • Arne Ilseng; Bjørn H. Skallerud; Arild H. Clausen An experimental and numerical study on the volume change of particle-filled elastomers in various loading modes, Mechanics of Materials, Volume 106 (2017), p. 44 | DOI:10.1016/j.mechmat.2017.01.007

Cité par 12 documents. Sources : Crossref

Commentaires - Politique