Comptes Rendus
Mechanics of network materials with responsive crosslinks
Comptes Rendus. Mécanique, Frontiers of micro and nanomechanics of materials: Soft or amorphous matter, surface effects, Volume 342 (2014) no. 5, pp. 264-272.

The mechanics of responsive fiber-network materials have been explored here by performing coarse-grained molecular dynamics simulations. Theoretical analysis based on a simple viscoelastic model is used to characterize the relationship between their microstructures and overall mechanical behaviors. The dynamic responses in stress and strain induced by externally tuned interfiber crosslinks are discussed. Our results here indicate the possibility of optimizing the dynamic performance of macroscopic network materials by tuning the crosslinks at the molecular level, and lay the groundwork for dynamic material design for structural and mechanical applications.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crme.2014.03.005
Mots-clés : Networked materials, Mechanical properties, Responsive materials, Dynamic materials, Crosslinks

Chao Wang 1, 2; Enlai Gao 1; Lifeng Wang 3; Zhiping Xu 1

1 Applied Mechanics Laboratory, Department of Engineering Mechanics and Center for Nano and Micro Mechanics, Tsinghua University, Beijing 100084, China
2 Institute of Advanced Study, Nanchang University, Nanchang, China
3 Department of Civil and Environmental Engineering, Clarkson University, Potsdam, NY 13699, USA
@article{CRMECA_2014__342_5_264_0,
     author = {Chao Wang and Enlai Gao and Lifeng Wang and Zhiping Xu},
     title = {Mechanics of network materials with responsive crosslinks},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {264--272},
     publisher = {Elsevier},
     volume = {342},
     number = {5},
     year = {2014},
     doi = {10.1016/j.crme.2014.03.005},
     language = {en},
}
TY  - JOUR
AU  - Chao Wang
AU  - Enlai Gao
AU  - Lifeng Wang
AU  - Zhiping Xu
TI  - Mechanics of network materials with responsive crosslinks
JO  - Comptes Rendus. Mécanique
PY  - 2014
SP  - 264
EP  - 272
VL  - 342
IS  - 5
PB  - Elsevier
DO  - 10.1016/j.crme.2014.03.005
LA  - en
ID  - CRMECA_2014__342_5_264_0
ER  - 
%0 Journal Article
%A Chao Wang
%A Enlai Gao
%A Lifeng Wang
%A Zhiping Xu
%T Mechanics of network materials with responsive crosslinks
%J Comptes Rendus. Mécanique
%D 2014
%P 264-272
%V 342
%N 5
%I Elsevier
%R 10.1016/j.crme.2014.03.005
%G en
%F CRMECA_2014__342_5_264_0
Chao Wang; Enlai Gao; Lifeng Wang; Zhiping Xu. Mechanics of network materials with responsive crosslinks. Comptes Rendus. Mécanique, Frontiers of micro and nanomechanics of materials: Soft or amorphous matter, surface effects, Volume 342 (2014) no. 5, pp. 264-272. doi : 10.1016/j.crme.2014.03.005. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2014.03.005/

[1] R. Lakes Materials with structural hierarchy, Nature, Volume 361 (1993), p. 511

[2] M.J. Buehler; Y.C. Yung Deformation and failure of protein materials in physiologically extreme conditions and disease, Nat. Mater., Volume 8 (2009), p. 175

[3] N. Halonen; A. Rautio; A.-R. Leino; T. Kyllönen; G. Tóth; J. Lappalainen; K. Kordás; M. Huuhtanen; R.L. Keiski; A. Sápi; M. Szabó; A. Kukovecz; Z. Kónya; I. Kiricsi; P.M. Ajayan; R. Vajtai Three-dimensional carbon nanotube scaffolds as particulate filters and catalyst support membranes, ACS Nano, Volume 4 (2010), p. 2003

[4] F. Deng; M. Ito; T. Noguchi; L. Wang; H. Ueki; K.-i. Niihara; Y.A. Kim; M. Endo; Q.-S. Zheng Elucidation of the reinforcing mechanism in carbon nanotube/rubber nanocomposites, ACS Nano, Volume 5 (2011), p. 3858

[5] K.E. Kasza; A.C. Rowat; J. Liu; T.E. Angelini; C.P. Brangwynne; G.H. Koenderink; D.A. Weitz The cell as a material, Curr. Opin. Cell Biol., Volume 19 (2007), p. 101

[6] S.W. Cranford; A. Tarakanova; N.M. Pugno; M.J. Buehler Nonlinear material behaviour of spider silk yields robust webs, Nature, Volume 482 (2012), p. 72

[7] J.S. Mohammed; W.L. Murphy Bioinspired design of dynamic materials, Adv. Mater., Volume 21 (2009), p. 2361

[8] M.A.C. Stuart; W.T.S. Huck; J. Genzer; M. Muller; C. Ober; M. Stamm; G.B. Sukhorukov; I. Szleifer; V.V. Tsukruk; M. Urban; F. Winnik; S. Zauscher; I. Luzinov; S. Minko Emerging applications of stimuli-responsive polymer materials, Nat. Mater., Volume 9 (2010), p. 101

[9] R.J. Wojtecki; M.A. Meador; S.J. Rowan Using the dynamic bond to access macroscopically responsive structurally dynamic polymers, Nat. Mater., Volume 10 (2011), p. 14

[10] N. Holten-Andersen; M.J. Harrington; H. Birkedal; B.P. Lee; P.B. Messersmith; K.Y.C. Lee; J.H. Waite pH-induced metal–ligand cross-links inspired by mussel yield self-healing polymer networks with near-covalent elastic moduli, Proc. Natl. Acad. Sci. USA, Volume 108 (2011), p. 2651

[11] D.E. Fullenkamp; L. He; D.G. Barrett; W.R. Burghardt; P.B. Messersmith Mussel-inspired histidine-based transient network metal coordination hydrogels, Macromolecules, Volume 46 (2013), p. 1167

[12] H. Xu; J. Nishida; W. Ma; H. Wu; M. Kobayashi; H. Otsuka; A. Takahara Competition between oxidation and coordination in cross-linking of polystyrene copolymer containing catechol groups, ACS Macro Lett., Volume 1 (2012), p. 457

[13] B. Xie; Y. Liu; Y. Ding; Q. Zheng; Z. Xu Mechanics of carbon nanotube networks: microstructural evolution and optimal design, Soft Matter, Volume 7 (2011), p. 10039

[14] C. Wang; B. Xie; Y. Liu; Z. Xu Mechanotunable microstructures of carbon nanotube networks, ACS Macro Lett., Volume 1 (2012), p. 1176

[15] N. Fakhri; D.A. Tsyboulski; L. Cognet; R.B. Weisman; M. Pasquali Diameter-dependent bending dynamics of single-walled carbon nanotubes in liquids, Proc. Natl. Acad. Sci. USA, Volume 106 (2009), p. 14219

[16] F.C. MacKintosh; J. Käs; P.A. Janmey Elasticity of semiflexible biopolymer networks, Phys. Rev. Lett., Volume 75 (1995), p. 4425

[17] C.P. Broedersz; M. Depken; N.Y. Yao; M.R. Pollak; D.A. Weitz; F.C. MacKintosh Cross-link-governed dynamics of biopolymer networks, Phys. Rev. Lett., Volume 105 (2010) (238101)

[18] T.B. Liverpool; M.C. Marchetti; J.F. Joanny; J. Prost Mechanical response of active gels, Europhys. Lett., Volume 85 (2009), p. 18007

[19] Z. Xu Mechanics of metal–catecholate complexes: the roles of coordination state and metal types, Sci. Rep., Volume 3 (2013), p. 2914

[20] S. Cranford; M.J. Buehler In silico assembly and nanomechanical characterization of carbon nanotube buckypaper, Nanotechnology, Volume 21 (2010), p. 265706

[21] Y. Liu; B. Xie; Z. Xu Mechanics of coordinative crosslinks in graphene nanocomposites: a first-principles study, J. Mater. Chem., Volume 21 (2011), p. 6707

[22] M. Xu; D.N. Futaba; T. Yamada; M. Yumura; K. Hata Carbon nanotubes with temperature-invariant viscoelasticity from −196 °C to 1000 °C, Science, Volume 330 (2010), p. 1364

[23] R.L.D. Whitby; T. Fukuda; T. Maekawa; S.L. James; S.V. Mikhalovsky Geometric control and tuneable pore size distribution of buckypaper and buckydiscs, Carbon, Volume 46 (2008), p. 949

[24] B. Ashrafi; J. Guan; V. Mirjalili; P. Hubert; B. Simard; A. Johnston Correlation between Young's modulus and impregnation quality of epoxy-impregnated SWCNT buckypaper, Composites, Part A, Appl. Sci. Manuf., Volume 41 (2010), p. 1184

[25] S. Acquah; D. Ventura; H. Kroto Electronic Properties of Carbon Nanotubes (J.M. Marulanda, ed.), Intech, 2011

Cited by Sources:

Comments - Policy