Comptes Rendus
Quantification of ignition time uncertainty based on the classical ignition theory and Fourier analysis
Comptes Rendus. Mécanique, Volume 342 (2014) no. 8, pp. 459-465.

This study aims at modeling the effect of incoming heat flux fluctuations, on solid material ignition. In order to propose a general methodology based on the classical ignition theory that can be applied to any kind of solid target, kernels accounting for the target temperature response regarding an incoming heat flux are considered for thermally thick and thin solids with low or high thermal inertia. A Fourier decomposition of the incoming heat flux is then used to calculate the target response to harmonic heat fluxes. Finally, effects of harmonic fluctuations on ignition are discussed based on the previous analytical results, allowing us to discriminate situations where ignition time is expected to be rather predictable from situations where ignition time is expected to be less predictable thanks to an uncertainty quantification of the ignition time.

Cette étude a pour but la modélisation des effets des fluctuations du flux de chaleur impactant un matériau solide sur l'ignition de ce dernier. Afin de proposer une méthodologie générale, fondée sur la théorie classique de l'ignition, qui pourra être appliquée à n'importe quel type de cible, des noyaux rendant compte de la réponse en température à une sollicitation thermique sont considérés pour des solides thermiquement épais et fins, et pour de basses et hautes inerties thermiques. Une décomposition en séries de Fourier de la sollicitation est alors utilisée pour calculer la réponse de la cible aux flux harmoniques. Finalement, les effets de ces fluctuations sont discutés à partir des résultats analytiques précédents, permettant de discriminer des situations où le temps d'ignition devrait être plutôt prédictible de situations où il risque d'être moins prédictible, et ce grâce à une quantification de l'incertitude du temps d'ignition.

Published online:
DOI: 10.1016/j.crme.2014.06.002
Keywords: Heat transfer, Piloted ignition, Ignition uncertainty
Mot clés : Transfert thermique, Ignition pilotée, Incertitude de l'ignition

Aymeric Lamorlette 1

1 Aix-Marseille Université, CNRS, Centrale Marseille, M2P2 UMR 7340, 13451 Marseille cedex 20, France
     author = {Aymeric Lamorlette},
     title = {Quantification of ignition time uncertainty based on the classical ignition theory and {Fourier} analysis},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {459--465},
     publisher = {Elsevier},
     volume = {342},
     number = {8},
     year = {2014},
     doi = {10.1016/j.crme.2014.06.002},
     language = {en},
AU  - Aymeric Lamorlette
TI  - Quantification of ignition time uncertainty based on the classical ignition theory and Fourier analysis
JO  - Comptes Rendus. Mécanique
PY  - 2014
SP  - 459
EP  - 465
VL  - 342
IS  - 8
PB  - Elsevier
DO  - 10.1016/j.crme.2014.06.002
LA  - en
ID  - CRMECA_2014__342_8_459_0
ER  - 
%0 Journal Article
%A Aymeric Lamorlette
%T Quantification of ignition time uncertainty based on the classical ignition theory and Fourier analysis
%J Comptes Rendus. Mécanique
%D 2014
%P 459-465
%V 342
%N 8
%I Elsevier
%R 10.1016/j.crme.2014.06.002
%G en
%F CRMECA_2014__342_8_459_0
Aymeric Lamorlette. Quantification of ignition time uncertainty based on the classical ignition theory and Fourier analysis. Comptes Rendus. Mécanique, Volume 342 (2014) no. 8, pp. 459-465. doi : 10.1016/j.crme.2014.06.002.

[1] C. Fernandez-Pello Combustion Fundamentals of Fire (G. Cox, ed.), Academic Press, 1995

[2] J.L. Torero, National Fire Protection Association (2008), p. 2.260-2.277

[3] J.G. Quintiere, John Wiley (2006), pp. 171-173

[4] P. Reska; P. Borowiec; T. Steinhaus; J.L. Torero A methodology for the estimation of ignition delay times in forest fire modelling, Combust. Flame, Volume 159 (2012), pp. 3652-3657

[5] J. Cohen Relating flame radiation to home ignition using modeling and experimental crown fires, Can. J. For. Res., Volume 34 (2004) no. 8, pp. 1616-1626

[6] D. Morvan Physical phenomena and length scales governing the behaviour of wildfires: a case for physical modelling, Fire Technol., Volume 47 (2011), pp. 437-460

[7] G. Atkinson; D. Drysdale; Y. Wu Fire driven flow in an inclined trench, Fire Saf. J. (1995), pp. 141-158

[8] J.-L. Dupuy; J. Marecha; D. Portier; J.-C. Valette The effects of slope and fuel bed width on laboratory fire behavior, Int. J. Wildland Fire, Volume 20 (2011), pp. 272-288

[9] M.A. Finney; J. Forthofer; I.C. Grenfell; B.A. Adam; N.K. Akafuah; K. Saito A study of flame spread in engineered cardboard fuelbeds; Part I: Correlations and observations, ISSM-7 2013 (2013)

[10] F. Morandini; X. Silvani; L. Rossi; P.-A. Santoni; A. Simeoni; J.-H. Balbi; J.L. Rossi; T. Marcelli Fire spread experiment across Mediterranean shrub: influence of wind on flame front properties, Fire Saf. J., Volume 41 (2006), pp. 229-235

[11] R.T. Long; J.L. Torero; J.G. Quintiere; A.C. Fernandez-Pello Scale and transport considerations on piloted Ignition of PMMA, Fire Safety Science – Proceedings of the Sixth International Symposium, 1999, pp. 567-578

[12] B. Benkoussas; J.-L. Consalvi; B. Porterie; N. Sardoy; J.-C. Loraud Modelling thermal degradation of woody fuel particles, Int. J. Therm. Sci., Volume 46 (2007), pp. 319-327

[13] H. Carslaw; J. Jaeger, Oxford University Press (1959), pp. 75-76

[14] F.W. Mowrer An analysis of effective thermal properties of thermally thick materials, Fire Saf. J. (2005), pp. 395-410

[15] A. Demharter Polyurethane rigid foam, a proven thermal insulating material for applications between +130 °C and −196 °C, Cryogenics, Volume 38 (1998), pp. 113-117

[16] D.D. Drysdale, John Wiley & Sons Ltd., Chichester, UK (1999), p. 33

[17] V. Tihay Contribution expérimentale et théorique pour la modélisation de la combustion dans les feux de forêts, Université de Corse Pascal-Paoli, France, 2007 (PhD thesis)

[18] P. Bartoli Forest fires: improvement of the knowledge of the coupling between flames and vegetative fuels, Université de Corse Pascal-Paoli, University of Edinburgh, France/UK, 2011 (PhD thesis)

[19] A. Simeoni; J.-C. Thomas; P. Bartoli; P. Borowieck; P. Reska; F. Colella; P.A. Santoni; J.L. Torero Flammability studies for wildland and wildland–urban interface fires applied to pine needles and solid polymers, Fire Saf. J., Volume 54 (2012), pp. 203-217

[20] A.M. Grishin A Mathematical Modelling of Forest Fires and New Methods of Fighting Them, Publishing House of the Tomsk University, Tomsk, Russia, 1997

[21] N.P. Cheney; J.S. Gould; W.R. Catchpole The influence of fuel, weather and fire shape variables on fire-spread in grasslands, Int. J. Wildland Fire, Volume 3 (1993) no. 1, pp. 31-44

[22] W.R. Catchpole; E.A. Catchpole; B.W. Butler; R.C. Rothermel; G.A. Morris; D.J. Lathan Rate of spread of free-burning fires in woody fuels in a wind tunnel, Combust. Sci. Technol., Volume 131 (1998), pp. 1-37

[23] W.M.G. Malalasekera; H.K. Versteeg; K. Gilchrist A review of research and an experimental study on the pulsation of buoyant diffusion flames and pool fires, Fire Mater., Volume 20 (1996), pp. 261-271

[24] P.J. Pagni Pool fire vortex shedding frequencies, Appl. Mech. Rev., Volume 43 (1990) no. 8, pp. 153-170

[25] K. Chetehouna; O. Séro-Guillaume; I. Sochet; A. Degiovanni On the experimental determination of flame front positions and of propagation parameters for a fire, Int. J. Heat Mass Transf., Volume 47 (2008) no. 9, pp. 1148-1157

Cited by Sources:

Comments - Policy