Comptes Rendus
Experimental study of the response of a flexible plate to a harmonic forcing in a flow
Comptes Rendus. Mécanique, Volume 342 (2014) no. 9, pp. 532-538.

Most aquatic animals propel themselves by flapping flexible appendages. To gain insight into the effect of flexibility on the swimming performance, we have studied experimentally an idealized system. It consists of a flexible plate whose leading edge is forced into a harmonic heave motion, and which is immersed in a uniform flow. As the forcing frequency is gradually increased, resonance peaks are evidenced on the plate's response. In addition to the forcing frequency, the Reynolds number, the plate rigidity and the forcing amplitude have also been varied. In the range of parameters studied, the main effect on the resonance is due to the forcing amplitude, which reveals that non-linearities are essential in this problem.

La plupart des animaux aquatiques se propulsent grâce au battement d'appendices flexibles. Afin d'avoir une meilleure compréhension de l'effet de la flexibilité sur la performance de la nage, nous avons étudié expérimentalement un système idéalisé. Il consiste en une plaque flexible, immergée dans un écoulement uniforme, dont le bord d'attaque est forcé en un mouvement harmonique transverse à l'écoulement. En augmentant graduellement la fréquence de forçage, des pics de résonance ont été mis en évidence. Outre la fréquence de forçage, on a également fait varier le nombre de Reynolds, la rigidité de la plaque et l'amplitude du forçage. Dans le domaine de paramètres étudié, le principal effet sur la résonance est dû à l'amplitude du forçage, ce qui révèle que les non-linéarités sont essentielles dans ce problème.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crme.2014.06.004
Keywords: Fluid–structure interaction, Flexible plate, Harmonic forcing, Resonance, Non-linearity, Propulsion
Mot clés : Interaction fluide–structure, Plaque flexible, Forçage harmonique, Résonance, Non-linéarité, Propulsion

Florine Paraz 1; Christophe Eloy 1; Lionel Schouveiler 1

1 Aix–Marseille Université, CNRS, Centrale Marseille, IRPHE UMR 7342, 13384 Marseille cedex 13, France
@article{CRMECA_2014__342_9_532_0,
     author = {Florine Paraz and Christophe Eloy and Lionel Schouveiler},
     title = {Experimental study of the response of a flexible plate to a harmonic forcing in a flow},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {532--538},
     publisher = {Elsevier},
     volume = {342},
     number = {9},
     year = {2014},
     doi = {10.1016/j.crme.2014.06.004},
     language = {en},
}
TY  - JOUR
AU  - Florine Paraz
AU  - Christophe Eloy
AU  - Lionel Schouveiler
TI  - Experimental study of the response of a flexible plate to a harmonic forcing in a flow
JO  - Comptes Rendus. Mécanique
PY  - 2014
SP  - 532
EP  - 538
VL  - 342
IS  - 9
PB  - Elsevier
DO  - 10.1016/j.crme.2014.06.004
LA  - en
ID  - CRMECA_2014__342_9_532_0
ER  - 
%0 Journal Article
%A Florine Paraz
%A Christophe Eloy
%A Lionel Schouveiler
%T Experimental study of the response of a flexible plate to a harmonic forcing in a flow
%J Comptes Rendus. Mécanique
%D 2014
%P 532-538
%V 342
%N 9
%I Elsevier
%R 10.1016/j.crme.2014.06.004
%G en
%F CRMECA_2014__342_9_532_0
Florine Paraz; Christophe Eloy; Lionel Schouveiler. Experimental study of the response of a flexible plate to a harmonic forcing in a flow. Comptes Rendus. Mécanique, Volume 342 (2014) no. 9, pp. 532-538. doi : 10.1016/j.crme.2014.06.004. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2014.06.004/

[1] M.J. Lighthill Mathematical Biofluiddynamics, Society for Industrial and Applied Mathematics, 1975

[2] S. Childress Mechanics of Swimming and Flying, Cambridge University Press, Cambridge, UK, 1981

[3] M.J. Lighthill Hydromechanics of aquatic animal propulsion, Annu. Rev. Fluid Mech., Volume 1 (1969), pp. 413-446

[4] M. Sfakiotakis; D.M. Lane; J.B.C. Davies Review of fish swimming modes for aquatic locomotion, IEEE J. Ocean. Eng., Volume 24 (1999) no. 2, pp. 237-252

[5] M.S. Triantafyllou; G.S. Triantafyllou; D.K.P. Yue Hydrodynamics of fishlike swimming, Annu. Rev. Fluid Mech., Volume 32 (2000), pp. 33-53

[6] R. Bainbridge Caudal fin and body movement in the propulsion of some fish, J. Exp. Biol., Volume 40 (1963), pp. 23-56

[7] F.E. Fish; G.V. Lauder Passive and active flow control by swimming fishes and mammals, Annu. Rev. Fluid Mech., Volume 38 (2006), pp. 194-224

[8] M.J. Lighthill Aquatic animal propulsion of high hydromechanical efficiency, J. Fluid Mech., Volume 44 (1970), pp. 265-301

[9] T.Y. Wu Hydromechanics of swimming propulsion, J. Fluid Mech., Volume 46 (1971), pp. 337-355

[10] M.S. Triantafyllou; G.S. Triantafyllou; R. Gopalkrishnan Wake mechanics of thrust generation in oscillating foils, Phys. Fluids A, Volume 3 (1991) no. 12, pp. 2835-2837

[11] J.M. Anderson; K. Streitlien; D.S. Barret; M.S. Triantafyllou Oscillating foils of high propulsive efficiency, J. Fluid Mech., Volume 360 (1998), pp. 41-72

[12] L. Schouveiler; F.S. Hover; M.S. Triantafyllou Performance of flapping foil propulsion, J. Fluids Struct., Volume 20 (2005), pp. 949-959

[13] J.H.J. Buchholz; A.J. Smits The wake structure and thrust performance of a rigid low-aspect-ratio pitching panel, J. Fluid Mech., Volume 603 (2008), pp. 331-365

[14] C. Eloy Optimal Strouhal number for swimming animals, J. Fluids Struct., Volume 30 (2012), pp. 205-218

[15] J. Katz; D. Weihs Hydrodynamics propulsion by large amplitude oscillation of an airfoil with chordwise flexibility, J. Fluid Mech., Volume 88 (1978) no. 3, pp. 485-497

[16] S. Alben Optimal flexibility of a flapping appendage in an inviscid fluid, J. Fluid Mech., Volume 614 (2008), pp. 355-380

[17] S. Michelin; S.G. Llewellyn Smith Resonance and propulsion performance of a heaving wing, Phys. Fluids, Volume 21 (2009) no. 7, p. 071902

[18] P. Prempraneerach; F.S. Hover; M.S. Triantafyllou The effect of chordwise flexibility on the thrust and efficiency of a flapping foil, Proc. 13th Int. Symp. on Unmanned Untethered Submersible Technology, 2003

[19] S. Heathcote; I. Gursul Flexible flapping airfoil propulsion at low Reynolds number, AIAA J., Volume 45 (2007) no. 5, pp. 1066-1079

[20] C. Marais; B. Thiria; J.E. Wesfreid; R. Godoy-Diana Stabilizing effect of flexibility in the wake of a flapping foil, J. Fluid Mech., Volume 710 (2012), pp. 659-669

[21] P.A. Dewey; B.M. Boschitsch; K.W. Moored; H.A. Stone; A.J. Smits Scaling laws for the thrust production of flexible pitching panels, J. Fluid Mech., Volume 732 (2013), pp. 29-46

[22] S. Alben; C. Witt; T.V. Baker; E. Anderson; G.V. Lauder Dynamics of freely swimming flexible foils, Phys. Fluids, Volume 24 (2012), p. 051901

[23] D.B. Quinn; G.V. Lauder; A.J. Smits Scaling the propulsive performance of heaving flexible panels, J. Fluid Mech., Volume 738 (2013), pp. 250-267

[24] C. Eloy; R. Lagrange; C. Souilliez; L. Schouveiler Aeroelastic instability of cantilevered flexible plates in uniform flow, J. Fluid Mech., Volume 611 (2008), pp. 97-106

[25] C. Eloy; N. Kofman; L. Schouveiler The origin of hysteresis in the flag instability, J. Fluid Mech., Volume 691 (2012), pp. 583-593

[26] S. Ramananarivo; R. Godoy-Diana; B. Thiria Rather than resonance, flapping wing flyers may play on aerodynamics to improve performance, Proc. Natl. Acad. Sci. USA, Volume 108 (2011), pp. 5964-5969

[27] M.J. Lighthill Note on the swimming of slender fish, J. Fluid Mech., Volume 9 (1960), pp. 305-317

Cited by Sources:

Comments - Policy