Dragonfly wings possess great stability and high load-bearing capacity during flapping flight, glide, and hover. Scientists have been intrigued by them and have carried out research for biomimetic applications. Relative to the large number of works on its flight aerodynamics, few researchers have focused on the insect wing structure and its mechanical properties. The wings of dragonflies are mainly composed of veins and membranes, a typical nanocomposite material. The veins and membranes have a complex design within the wing that give rise to whole-wing characteristics which result in dragonflies being supremely versatile, maneuverable fliers. The wing structure, especially corrugation, on dragonflies is believed to enhance aerodynamic performance. The mechanical properties of dragonfly wings need to be understood in order to perform simulated models. This paper focuses on the effects of structure, mechanical properties, and morphology of dragonfly wings on their flyability, followed by the implications in fabrication and modeling.
Jiyu Sun 1, 2 ; Bharat Bhushan 2
@article{CRMECA_2012__340_1-2_3_0, author = {Jiyu Sun and Bharat Bhushan}, title = {The structure and mechanical properties of dragonfly wings and their role on flyability}, journal = {Comptes Rendus. M\'ecanique}, pages = {3--17}, publisher = {Elsevier}, volume = {340}, number = {1-2}, year = {2012}, doi = {10.1016/j.crme.2011.11.003}, language = {en}, }
Jiyu Sun; Bharat Bhushan. The structure and mechanical properties of dragonfly wings and their role on flyability. Comptes Rendus. Mécanique, Biomimetic flow control, Volume 340 (2012) no. 1-2, pp. 3-17. doi : 10.1016/j.crme.2011.11.003. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2011.11.003/
[1] M. Tamai, Experimental investigations on biologically inspired airfoils for MAV applications, Master thesis, Iowa State University, Ames, Iowa, U.S., 2007.
[2] Flying Insects and Robots, Springer-Verlag, Heidelberg, Germany, 2009
[3] An experimental and numerical study of calliphora wing structure, Exp. Mech., Volume 50 (2010), pp. 1183-1197
[4] Biomimetics: lessons from nature-an overview, Phil. Trans. R. Soc. A, Volume 367 (2009), pp. 1445-1486
[5] Approaches to the structural modelling of insect wings, Philos. Trans. R. Soc. Lond. B Biol. Sci., Volume 358 (2003), pp. 1577-1587
[6] Biomechanical aspects of the insect wing: an analysis using the finite element method, Comp. Biol. Med., Volume 28 (1998), pp. 423-437
[7] Biomimetics: Its practice and theory, J. R. Soc. Interface, Volume 3 (2006), pp. 471-482
[8] Molecular Biology of the Cell, Garland Science, New York, 2008
[9] Biological materials: Structure and mechanical properties, Prog. Mater. Sci., Volume 53 (2008), pp. 1-206
[10] Functional morphology of insect wings, Annu. Rev. Entomol., Volume 37 (1992), pp. 113-140
[11] Smart engineering in the mid-carboniferous: How well could palaeozoic dragonflies fly?, Science, Volume 282 (1998), pp. 749-751
[12] Flexural stiffness in insect wings I. Scaling and the influence of wing venation, J. Exp. Biol., Volume 206 (2003), pp. 2979-2987
[13] Flexural stiffness in insect wings II. Spatial distribution and dynamic wing bending, J. Exp. Biol., Volume 206 (2003), pp. 2989-2997
[14] Flight mechanics of a dragonfly, J. Exp. Biol., Volume 116 (1985), pp. 79-107
[15] Unsteady aerodynamics and flow control for flapping wing flyers, Prog. Aerosp. Sci., Volume 39 (2003), pp. 635-681
[16] Dissecting insect flight, Annu. Rev. Fluid Mech., Volume 37 (2005), pp. 183-210
[17] Aerodynamics of Low Reynolds Number Flyers, Cambridge University Press, UK, 2008
[18] Recent progress in flapping wing aerodynamics and aeroelasticity, Prog. Aerosp. Sci., Volume 46 (2010), pp. 284-327
[19] A genealogic study of dragon-fly wing venation, Proc. U.S. Natn. Mus., Volume 26 (1903), pp. 703-764
[20] Modelling and manufacturing of a dragonfly wing as basis for bionic research (D. Marjanovic, ed.), Proceedings of the 9th International Design Conference (DESIGN 2006), 2006, pp. 215-220
[21] Bioinspired corrugated airfoil at low Reynolds numbers, J. Aircraft, Volume 45 (2008), pp. 2068-2077
[22] Aerodynamic characteristics of the wings and body of a dragonfly, J. Exp. Biol., Volume 199 (1996), pp. 281-294
[23] The relationship between dragonfly wing structure and torsional deformation, J. Theor. Biol., Volume 193 (1998), pp. 39-45
[24] The effect of the costal vein configuration of the wings of a dragonfly, Key Eng. Mater., Volume 326–328 (2006), pp. 819-822
[25] Structure analyses of the wings of anotogaster sieboldii and hybris subjacens, Key Eng. Mater., Volume 345–346 (2007), pp. 1237-1240
[26] Evolution, diversification, and mechanics of dragonfly wings (Alex Córdoba-Aguilar, ed.), Dragonflies and Damselflies: Model Organisms for Ecological and Evolutionary Research, Oxford University Press, UK, 2008
[27] Drag reduction of airfoils with miniflaps. Can we learn from dragonflies?, Fluids, Volume 19–22 (2000), pp. 1-30
[28] Structural analysis of a dragonfly wing, Exp. Mech., Volume 50 (2010), pp. 1323-1334
[29] D.J.S. Newman, The functional wing morphology of some Odonata, PhD thesis, University of Exeter, Exeter, Devon, UK, 1982.
[30] Biology of Insects, Discovery Publishing House Press, New Delhi, India, 2003
[31] The pterostigma of insect wings, an inertial regulator of wing pitch, J. Comp. Physiol., Volume 81 (1972), pp. 9-22
[32] Effects of sandwich microstructures on mechanical behaviors of dragonfly wing vein, Compos. Sci. Tech., Volume 68 (2008), pp. 186-192
[33] Free vibration analysis of dragonfly wings using finite element method, Int. J. Multiphysics, Volume 3 (2009), pp. 101-110
[34] A study on the wing structure and flapping behavior of a dragonfly, JSME Int. J., Volume 42 (1999), pp. 721-729
[35] Aerodynamic characteristics of dragonfly wing sections compared with technical aerofoils, J. Exp. Biol., Volume 203 (2000), pp. 3125-3135
[36] Microsculpture of the wing surface in Odonata: evidence for cuticular wax covering, Arthropod Struct. Dev., Volume 29 (2000), pp. 129-135
[37] Acoustic microscopic analysis of the biological structure of insect wing membranes with emphasis on their waxy surface, Ann. Biomed. Eng., Volume 29 (2001), pp. 1054-1058
[38] Microstructure and nanomechanical properties of the wing membrane of dragonfly, Mater. Sci. Eng. A, Volume 457 (2007), pp. 254-260
[39] Experimental study on the collision of a droplet with a dragonfly wing, J. Jpn. Soc. Exp. Mech., Volume 5 (2005), pp. 272-279
[40] Multiscale Dissipative Mechanisms and Hierarchical Surfaces: Friction, Superhydrophobicity, and Biomimetics, Springer-Verlag, Heidelberg, Germany, 2008
[41] Wettability and contaminability of insect wings as a function of their surface sculptures, Acta Zoologica, Volume 77 (1996), pp. 213-225
[42] An approach to the mechanics of pleating in dragonfly wings, J. Exp. Biol., Volume 125 (1986), pp. 361-371
[43] Wing morphology of some insects, JSME Int. J., Volume 43 (2000), pp. 895-900
[44] Flapping and flexible wings for biological and micro airvehicles, Prog. Aerosp. Sci., Volume 35 (1999), pp. 455-505
[45] The Biokinetics of Flying and Swimming, American Institute of Aeronautics and Astronautics Inc., Virginia, 2006
[46] A computational study of the aerodynamic performance of a dragonfly wing section in gliding flight, Bioinspir. Biomim., Volume 3 (2008), p. 026004
[47] Mechanische eigenschaften biologischer materialien am beispiel insektenflügel (W. Nachtigall; A. Wisser, eds.), Biona-Report 14, Fischer, Stuttgart, Germany, 1999
[48] Struktur- und Materialanalyse biologischer Systeme Die Flügelkutikula der Insekten (Odonata, Anisopter) (W. Nachtigall; A. Wisser, eds.), Biona-Report 14, Fischer, Stuttgart, Germany, 2000
[49] M. Kempf, Biological materials, determination of Youngʼs moduli of the insect cuticle (dragonflies, 2000; Anisoptera), Application note, Hysitron Inc, www.hysitron.com.
[50] Nanomechanical properties of the stigma of dragonfly Anax parthenope julius Brauer, J. Mater. Sci., Volume 42 (2007), pp. 2894-2898
[51] Coupled model analysis of the structure and nano-mechanical properties of dragonfly wings, IET Nanobiotechnol., Volume 4 (2010), pp. 10-18
[52] Nanomechanical characterisation of solid surfaces and thin films, Intl. Mater. Rev., Volume 48 (2003), pp. 125-164
[53] Springer Handbook of Nanotechnology, Springer-Verlag, Heidelberg, Germany, 2010
[54] Nanotribology and Nanomechanics I – Measurement Techniques and Nanomechanics, II – Nanotribology, Biomimetics, and Industrial Applications, Springer-Verlag, Heidelberg, Germany, 2011
[55] The aerodynamics of insect flight, J. Exp. Biol., Volume 206 (2003), pp. 4191-4208
[56] Quick estimates of flight fitness in hovering animals, including novel mechanisms for lift production, J. Exp. Biol., Volume 59 (1973), pp. 169-230
[57] On the Weis-Fogh mechanism of lift generation, J. Fluid Mech., Volume 60 (1973), pp. 1-17
[58] Experiments on the Weis-Fogh mechanism of lift generation by insects in hovering flight. Part I. Dynamics of the ‘fling’, J. Fluid Mech., Volume 93 (1979), pp. 47-63
[59] The generation of circulation and lift in a rigid two-dimensional fling, J. Fluid Mech., Volume 165 (1986), pp. 247-272
[60] Technical aspects of microscale flight systems, J. Avian. Biol., Volume 29 (1998), pp. 458-468
[61] Two dimensional mechanism for insect hovering, Phys. Rev. Lett., Volume 85 (2000), pp. 2216-2219
[62] Dragonfly flight – novel uses of unsteady separated flows, Science, Volume 228 (1985), pp. 1326-1329
[63] Dragonfly flight I: gliding flight and steady-state aerodynamic forces, J. Exp. Biol., Volume 200 (1997), pp. 543-556
[64] T.A. Swanson, An experimental and numerical investigation of flapping and plunging wings, PhD thesis, Department of Mechanical & Aerospace Engineering, Missouri University of Science and Technology, Rolla, Missouri, 2009.
[65] Model test on a wing section of a dragonfly in scale effects in animal locomotion (T.J. Pedley, ed.), Scale Effects in Animal Locomotion, Academic Press, London, UK, 1977, pp. 445-477
[66] Dragonfly flight: free-flight and tethered flow visualizations reveal a diverse array of unsteady liftgenerating mechanisms, controlled primarily via angle of attack, J. Expl. Biol., Volume 207 (2004), pp. 4299-4323
[67] An experimental study of a bio-inspired corrugated airfoil for micro air vehicle applications, Exp. Fluids, Volume 49 (2010), pp. 531-546
[68] Artificial insect wings of diverse morphology for flapping-wing micro air vehicles, Bioinspir. Biomim., Volume 4 (2009), p. 036002
[69] Fabrication of a three-dimensional insect–wing model by micromolding of thermosetting resin with a thin elastmeric mold, J. Micromech. Microeng., Volume 17 (2007), pp. 2485-2490
[70] K.N. Shivakumar, S. Lingaiah, Ultra lightweight materials for bio-inspired microsystems, in: T. Ishikawa (Ed.), Proceedings of 16th International Conference on Composite Materials (ICCM-16), Kyoto, Japan, July 8–13, 2007.
[71] Simplified dragonfly airfoil aerodynamics at Reynolds numbers below 8000, Phys. Fluids, Volume 21 (2009), p. 071901
[72] Fabrication of corrugated artificial insect wings using laser micromachined molds, J. Micromech. Microeng., Volume 20 (2010), p. 075008
[73] Morphology of insect wings and airflow produced by flapping insects, J. Intell. Mater. Syst. Struct., Volume 17 (2006), pp. 743-751
- Perspectives on low-Reynolds-number aerodynamics: shape, motion and structure, Acta Mechanica Sinica, Volume 41 (2025) no. 7 | DOI:10.1007/s10409-025-25312-x
- Dragonfly-Inspired 3D Bionic Folding Grid Structure Design, Applied Sciences, Volume 15 (2025) no. 3, p. 1673 | DOI:10.3390/app15031673
- Numerical Analysis of the Aerodynamic Interactions in Tandem Flying Snake Airfoils, Biomimetics, Volume 10 (2025) no. 3, p. 174 | DOI:10.3390/biomimetics10030174
- A gradient-evolutionary coupled topology optimization for sheet reinforcement based on the mechanics of Voronoi pattern on dragonfly wings, Advances in Engineering Software, Volume 190 (2024), p. 103600 | DOI:10.1016/j.advengsoft.2024.103600
- Nature’s Load-Bearing Design Principles and Their Application in Engineering: A Review, Biomimetics, Volume 9 (2024) no. 9, p. 545 | DOI:10.3390/biomimetics9090545
- Multidimensional vibrational circular dichroism for insect wings: Comparison of species, Chirality, Volume 36 (2024) no. 3 | DOI:10.1002/chir.23655
- Introduction, Introduction to Biomimetics and Bioinspiration (2024), p. 1 | DOI:10.1007/978-3-031-62344-8_1
- Mosquitoes’ Locomotion and Painless Piercing, Introduction to Biomimetics and Bioinspiration (2024), p. 727 | DOI:10.1007/978-3-031-62344-8_15
- Bio-inspired structural optimization of three-dimensional Voronoi structures using genetic algorithms: Inspirations from avian wing bones, Materials Design, Volume 248 (2024), p. 113501 | DOI:10.1016/j.matdes.2024.113501
- Microscopic vibrational circular dichroism on the forewings of a European hornet: heterogenous sequences of protein domains with different secondary structures, Physical Chemistry Chemical Physics, Volume 26 (2024) no. 25, p. 17918 | DOI:10.1039/d4cp01827c
- Bioinspired High Tolerant Vein–Membrane Al2O3 Coating, Advanced Functional Materials, Volume 33 (2023) no. 30 | DOI:10.1002/adfm.202215135
- Dragonfly‐Inspired Wing Design Enabled by Machine Learning and Maxwell's Reciprocal Diagrams, Advanced Science, Volume 10 (2023) no. 18 | DOI:10.1002/advs.202207635
- Review on ultra-lightweight flapping-wing nano air vehicles: Artificial muscles, flight control mechanism, and biomimetic wings, Chinese Journal of Aeronautics, Volume 36 (2023) no. 6, p. 63 | DOI:10.1016/j.cja.2023.03.031
- Experimental and numerical investigation of the effect of graphene nanoparticles on the strength of sandwich structures under low-velocity impact, Functional Composites and Structures, Volume 5 (2023) no. 1, p. 015002 | DOI:10.1088/2631-6331/acb88f
- Development of a Novel Drag-Based Vertical-Axis Wind Rotor Inspired from Orange Sea-Pen, Sustainable Energy Generation and Storage (2023), p. 1 | DOI:10.1007/978-981-99-2088-4_1
- A novel bioinspired architectured materials with interlocking designs based on tessellation, Additive Manufacturing, Volume 58 (2022), p. 103052 | DOI:10.1016/j.addma.2022.103052
- Fully-printed metamaterial-type flexible wings with controllable flight characteristics, Bioinspiration Biomimetics, Volume 17 (2022) no. 2, p. 025002 | DOI:10.1088/1748-3190/ac42e2
- A Comprehensive Review: Recent Developments of Biomimetic Sensors, Journal of Bionic Engineering, Volume 19 (2022) no. 4, p. 853 | DOI:10.1007/s42235-022-00181-5
- Deformable model of a butterfly in motion on the example of Attacus atlas, Journal of the Mechanical Behavior of Biomedical Materials, Volume 133 (2022), p. 105351 | DOI:10.1016/j.jmbbm.2022.105351
- Quantum Optical Coherence Microscopy for Bioimaging Applications, Physical Review Applied, Volume 18 (2022) no. 3 | DOI:10.1103/physrevapplied.18.034060
- A Novel Bio-Inspired Advanced Functional Architectured Materials with Interlocking Designs for Multi-Functional Properties, SSRN Electronic Journal (2022) | DOI:10.2139/ssrn.4122442
- The damping and structural properties of dragonfly and damselfly wings during dynamic movement, Communications Biology, Volume 4 (2021) no. 1 | DOI:10.1038/s42003-021-02263-2
- Fluid–structure interaction simulation on flight performance of a dragonfly wing under different pterostigma weights, Journal of Mechanics, Volume 37 (2021), p. 216 | DOI:10.1093/jom/ufaa013
- Stigma as two degrees of freedom energy sink for flutter suppression, Journal of Sound and Vibration, Volume 515 (2021), p. 116441 | DOI:10.1016/j.jsv.2021.116441
- The Effect of Bionic 3D Printed Structure Morphology on Skin Friction, Journal of Tribology, Volume 143 (2021) no. 5 | DOI:10.1115/1.4050138
- Dragonfly wing-inspired architecture makes a stiff yet tough healable material, Matter, Volume 4 (2021) no. 7, p. 2474 | DOI:10.1016/j.matt.2021.05.001
- Dragonfly-wing-inspired polymer design for property enhancement, Matter, Volume 4 (2021) no. 8, p. 2674 | DOI:10.1016/j.matt.2021.07.005
- Optimal Elasticity of Biological Networks, Physical Review Letters, Volume 126 (2021) no. 3 | DOI:10.1103/physrevlett.126.038101
- Effect of graphene nanoparticles on the strength of sandwich structure inspired by dragonfly wings under low‐velocity impact, Polymer Composites, Volume 42 (2021) no. 10, p. 5249 | DOI:10.1002/pc.26219
- 2D numerical investigations derived from a 3D dragonfly wing captured with a high-resolution micro-CT, Technology and Health Care, Volume 30 (2021) no. 1, p. 283 | DOI:10.3233/thc-219010
- , 2020 3rd IEEE International Conference on Soft Robotics (RoboSoft) (2020), p. 464 | DOI:10.1109/robosoft48309.2020.9115983
- , 2020 International Conference on Artificial Intelligence and Electromechanical Automation (AIEA) (2020), p. 172 | DOI:10.1109/aiea51086.2020.00043
- , AIAA Scitech 2020 Forum (2020) | DOI:10.2514/6.2020-2293
- Parametric and Statistical Study of the Wing Geometry of 75 Species of Odonata, Applied Sciences, Volume 10 (2020) no. 15, p. 5389 | DOI:10.3390/app10155389
- Optimization design of lightweight structure inspired by glass sponges (Porifera, Hexacinellida) and its mechanical properties, Bioinspiration Biomimetics, Volume 15 (2020) no. 3, p. 036006 | DOI:10.1088/1748-3190/ab6ca9
- A disigned method of the surface structure of suspended glass transport device based bionic structure of dragonfly wings, Industrial Lubrication and Tribology, Volume 72 (2020) no. 10, p. 1245 | DOI:10.1108/ilt-09-2019-0389
- How do dragonfly wings work? A brief guide to functional roles of wing structural components, International Journal of Odonatology, Volume 23 (2020) no. 1, p. 23 | DOI:10.1080/13887890.2019.1677515
- Phylogeny of Libellulidae (Odonata: Anisoptera): comparison of molecular and morphology-based phylogenies based on wing morphology and migration, PeerJ, Volume 8 (2020), p. e8567 | DOI:10.7717/peerj.8567
- Wing wettability gradient in a damselflyLestes sponsa(Odonata: Lestidae) reflects the submergence behaviour during underwater oviposition, Royal Society Open Science, Volume 7 (2020) no. 12, p. 201258 | DOI:10.1098/rsos.201258
- Effect of vein microstructure and nanomechanical behaviors on wind-resistant performance of Asian ladybeetle hindwing, Tribology International, Volume 142 (2020), p. 105719 | DOI:10.1016/j.triboint.2019.04.003
- , 2019 IEEE International Conference on Manipulation, Manufacturing and Measurement on the Nanoscale (3M-NANO) (2019), p. 197 | DOI:10.1109/3m-nano46308.2019.8947373
- Mechanics of Arthropod Cuticle-Versatility by Structural and Compositional Variation, Architectured Materials in Nature and Engineering, Volume 282 (2019), p. 287 | DOI:10.1007/978-3-030-11942-3_10
- Influence of Microstructures on Aerodynamic Characteristics for Dragonfly Wing in Gliding Flight, Journal of Bionic Engineering, Volume 16 (2019) no. 3, p. 423 | DOI:10.1007/s42235-019-0034-3
- A review of beetle hindwings: Structure, mechanical properties, mechanism and bioinspiration, Journal of the Mechanical Behavior of Biomedical Materials, Volume 94 (2019), p. 63 | DOI:10.1016/j.jmbbm.2019.02.031
- Lessons from nature for green science and technology: an overview and bioinspired superliquiphobic/philic surfaces, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, Volume 377 (2019) no. 2138, p. 20180274 | DOI:10.1098/rsta.2018.0274
- In vivostructural dynamic analysis of the dragonfly wing: the effect of stigma as its modulator, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, Volume 377 (2019) no. 2150, p. 20190132 | DOI:10.1098/rsta.2019.0132
- Morphology of hindwing veins in the shield bug Graphosoma italicum (Heteroptera: Pentatomidae), Arthropod Structure Development, Volume 47 (2018) no. 4, p. 375 | DOI:10.1016/j.asd.2018.04.004
- Introduction, Biomimetics, Volume 279 (2018), p. 1 | DOI:10.1007/978-3-319-71676-3_1
- Insects Locomotion, Piercing, Sucking and Stinging Mechanisms, Biomimetics, Volume 279 (2018), p. 819 | DOI:10.1007/978-3-319-71676-3_20
- An experimental and numerical investigation on low velocity impact response of a composite structure inspired by dragonfly wing configuration, Composite Structures, Volume 184 (2018), p. 327 | DOI:10.1016/j.compstruct.2017.10.006
- Effects of Structural Characteristics of a Bionic Dragonfly Wing on Its Low Velocity Impact Resistance, Journal of Bionic Engineering, Volume 15 (2018) no. 5, p. 859 | DOI:10.1007/s42235-018-0073-1
- Analysis of modularity and integration suggests evolution of dragonfly wing venation mainly in response to functional demands, Journal of The Royal Society Interface, Volume 15 (2018) no. 145, p. 20180277 | DOI:10.1098/rsif.2018.0277
- Lessons from mosquitoes’ painless piercing, Journal of the Mechanical Behavior of Biomedical Materials, Volume 84 (2018), p. 178 | DOI:10.1016/j.jmbbm.2018.05.025
- Insects locomotion, piercing, sucking and stinging mechanisms, Microsystem Technologies, Volume 24 (2018) no. 12, p. 4703 | DOI:10.1007/s00542-018-4175-9
- Deformation behavior of dragonfly-inspired nodus structured wing in gliding flight through experimental visualization approach, Scientific Reports, Volume 8 (2018) no. 1 | DOI:10.1038/s41598-018-24237-x
- Nano-mechanical properties and structural of a 3D-printed biodegradable biomimetic micro air vehicle wing, IOP Conference Series: Materials Science and Engineering, Volume 210 (2017), p. 012073 | DOI:10.1088/1757-899x/210/1/012073
- Role of soft matter in the sandwich vein of dragonfly wing in its configuration and aerodynamic behaviors, Journal of Bionic Engineering, Volume 14 (2017) no. 3, p. 557 | DOI:10.1016/s1672-6529(16)60421-3
- Spatial network analysis to construct simplified wing structural models for Biomimetic Micro Air Vehicles, Aerospace Science and Technology, Volume 49 (2016), p. 259 | DOI:10.1016/j.ast.2015.12.005
- Effects of heat treatment on chitosan nanocomposite film reinforced with nanocrystalline cellulose and tannic acid, Carbohydrate Polymers, Volume 140 (2016), p. 202 | DOI:10.1016/j.carbpol.2015.12.068
- Static strength analysis of dragonfly inspired wings for biomimetic micro aerial vehicles, Chinese Journal of Aeronautics, Volume 29 (2016) no. 2, p. 411 | DOI:10.1016/j.cja.2016.02.007
- Nanomechanical Behaviour of the Membranous Wings of Dragonfly Pantala flavescens Fabricius, Journal of Bionic Engineering, Volume 13 (2016) no. 3, p. 388 | DOI:10.1016/s1672-6529(16)60312-8
- Propulsion for Biological Inspired Micro-Air Vehicles (MAVs), Open Journal of Applied Sciences, Volume 06 (2016) no. 01, p. 7 | DOI:10.4236/ojapps.2016.61002
- Nanoindentation mechanical properties and structural biomimetic models of three species of insects wings, Journal of Wuhan University of Technology-Mater. Sci. Ed., Volume 30 (2015) no. 4, p. 831 | DOI:10.1007/s11595-015-1238-y
- Morphological and mechanical characterisation of the hindwing nodus from the Libellulidae family of dragonfly (Indonesia), Arthropod Structure Development, Volume 43 (2014) no. 5, p. 415 | DOI:10.1016/j.asd.2014.06.004
- BIOMIMETIC STRUCTURE DESIGN OF DRAGONFLY WING VENATION USING TOPOLOGY OPTIMIZATION METHOD, Journal of Mechanics in Medicine and Biology, Volume 14 (2014) no. 04, p. 1450078 | DOI:10.1142/s021951941450078x
- Antifatigue properties of dragonfly Pantala flavescens wings, Microscopy Research and Technique, Volume 77 (2014) no. 5, p. 356 | DOI:10.1002/jemt.22352
- Dragonfly Wings: Special Structures for Aerial Acrobatics, Remarkable Natural Material Surfaces and Their Engineering Potential (2014), p. 65 | DOI:10.1007/978-3-319-03125-5_6
- Experimental investigations of the functional morphology of dragonfly wings, Chinese Physics B, Volume 22 (2013) no. 8, p. 088702 | DOI:10.1088/1674-1056/22/8/088702
- Tensile Properties of Veins of Damselfly Wing, Journal of Biomaterials and Nanobiotechnology, Volume 04 (2013) no. 03, p. 247 | DOI:10.4236/jbnb.2013.43031
- Functional characteristics of dragonfly wings and its bionic investigation progress, Science China Technological Sciences, Volume 56 (2013) no. 4, p. 884 | DOI:10.1007/s11431-013-5158-9
- Structure and mechanical properties of beetle wings: a review, RSC Advances, Volume 2 (2012) no. 33, p. 12606 | DOI:10.1039/c2ra21276e
Cité par 71 documents. Sources : Crossref
Commentaires - Politique