Comptes Rendus
The structure and mechanical properties of dragonfly wings and their role on flyability
Comptes Rendus. Mécanique, Biomimetic flow control, Volume 340 (2012) no. 1-2, pp. 3-17.

Dragonfly wings possess great stability and high load-bearing capacity during flapping flight, glide, and hover. Scientists have been intrigued by them and have carried out research for biomimetic applications. Relative to the large number of works on its flight aerodynamics, few researchers have focused on the insect wing structure and its mechanical properties. The wings of dragonflies are mainly composed of veins and membranes, a typical nanocomposite material. The veins and membranes have a complex design within the wing that give rise to whole-wing characteristics which result in dragonflies being supremely versatile, maneuverable fliers. The wing structure, especially corrugation, on dragonflies is believed to enhance aerodynamic performance. The mechanical properties of dragonfly wings need to be understood in order to perform simulated models. This paper focuses on the effects of structure, mechanical properties, and morphology of dragonfly wings on their flyability, followed by the implications in fabrication and modeling.

Publié le :
DOI : 10.1016/j.crme.2011.11.003
Keywords: Dragonfly wing, Structure, Mechanical properties, Flyability

Jiyu Sun 1, 2 ; Bharat Bhushan 2

1 Key Laboratory of Bionic Engineering (Ministry of Education), Jilin University, Changchun, 130025, PR China
2 Nanoprobe Laboratory for Bio- & Nanotechnology and Biomimetics (NLB2), The Ohio State University, 201 W. 19th Avenue, Columbus, OH 43210-1142, USA
@article{CRMECA_2012__340_1-2_3_0,
     author = {Jiyu Sun and Bharat Bhushan},
     title = {The structure and mechanical properties of dragonfly wings and their role on flyability},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {3--17},
     publisher = {Elsevier},
     volume = {340},
     number = {1-2},
     year = {2012},
     doi = {10.1016/j.crme.2011.11.003},
     language = {en},
}
TY  - JOUR
AU  - Jiyu Sun
AU  - Bharat Bhushan
TI  - The structure and mechanical properties of dragonfly wings and their role on flyability
JO  - Comptes Rendus. Mécanique
PY  - 2012
SP  - 3
EP  - 17
VL  - 340
IS  - 1-2
PB  - Elsevier
DO  - 10.1016/j.crme.2011.11.003
LA  - en
ID  - CRMECA_2012__340_1-2_3_0
ER  - 
%0 Journal Article
%A Jiyu Sun
%A Bharat Bhushan
%T The structure and mechanical properties of dragonfly wings and their role on flyability
%J Comptes Rendus. Mécanique
%D 2012
%P 3-17
%V 340
%N 1-2
%I Elsevier
%R 10.1016/j.crme.2011.11.003
%G en
%F CRMECA_2012__340_1-2_3_0
Jiyu Sun; Bharat Bhushan. The structure and mechanical properties of dragonfly wings and their role on flyability. Comptes Rendus. Mécanique, Biomimetic flow control, Volume 340 (2012) no. 1-2, pp. 3-17. doi : 10.1016/j.crme.2011.11.003. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2011.11.003/

[1] M. Tamai, Experimental investigations on biologically inspired airfoils for MAV applications, Master thesis, Iowa State University, Ames, Iowa, U.S., 2007.

[2] D. Floreano; J.C. Zufferey; M.V. Srinivasan; C. Ellington Flying Insects and Robots, Springer-Verlag, Heidelberg, Germany, 2009

[3] R. Ganguli; S. Gorb; F.O. Lehmann; S. Mukherjee; S. Mukherjee An experimental and numerical study of calliphora wing structure, Exp. Mech., Volume 50 (2010), pp. 1183-1197

[4] B. Bhushan Biomimetics: lessons from nature-an overview, Phil. Trans. R. Soc. A, Volume 367 (2009), pp. 1445-1486

[5] R.J. Wootton; R.C. Herbert; P.G. Young; K.E. Evans Approaches to the structural modelling of insect wings, Philos. Trans. R. Soc. Lond. B Biol. Sci., Volume 358 (2003), pp. 1577-1587

[6] A.B. Kesel; U. Philippi; W. Nachtigall Biomechanical aspects of the insect wing: an analysis using the finite element method, Comp. Biol. Med., Volume 28 (1998), pp. 423-437

[7] J.F.V. Vincent; O.A. Bogatyreva; N.R. Bogatyrev; A. Bowyer; A.K. Pahl Biomimetics: Its practice and theory, J. R. Soc. Interface, Volume 3 (2006), pp. 471-482

[8] B. Alberts; A. Johnson; J. Lewis; M. Raff; K. Roberts; P. Walter Molecular Biology of the Cell, Garland Science, New York, 2008

[9] M.A. Meyers; P.Y. Chen; A.Y.M. Lin; Y. Seki Biological materials: Structure and mechanical properties, Prog. Mater. Sci., Volume 53 (2008), pp. 1-206

[10] R.J. Wootton Functional morphology of insect wings, Annu. Rev. Entomol., Volume 37 (1992), pp. 113-140

[11] R.J. Wootton; J. Kukalová-Peck; D.J.S. Newman; J. Muzón Smart engineering in the mid-carboniferous: How well could palaeozoic dragonflies fly?, Science, Volume 282 (1998), pp. 749-751

[12] S.A. Combes; T.L. Daniel Flexural stiffness in insect wings I. Scaling and the influence of wing venation, J. Exp. Biol., Volume 206 (2003), pp. 2979-2987

[13] S.A. Combes; T.L. Daniel Flexural stiffness in insect wings II. Spatial distribution and dynamic wing bending, J. Exp. Biol., Volume 206 (2003), pp. 2989-2997

[14] A. Azuma; S. Azuma; I. Watanabe; T. Furuta Flight mechanics of a dragonfly, J. Exp. Biol., Volume 116 (1985), pp. 79-107

[15] S. Ho; H. Nassef; N. Pornsinsirirak; Y.C. Tai; C.M. Ho Unsteady aerodynamics and flow control for flapping wing flyers, Prog. Aerosp. Sci., Volume 39 (2003), pp. 635-681

[16] Z.J. Wang Dissecting insect flight, Annu. Rev. Fluid Mech., Volume 37 (2005), pp. 183-210

[17] W. Shyy; Y. Lian; J. Tang; D. Viieru; H. Liu Aerodynamics of Low Reynolds Number Flyers, Cambridge University Press, UK, 2008

[18] W. Shyy; H. Aono; S.K. Chimakurthi; P. Trizila; C.K. Kang; C.E.S. Cesnik; H. Liu Recent progress in flapping wing aerodynamics and aeroelasticity, Prog. Aerosp. Sci., Volume 46 (2010), pp. 284-327

[19] J.G. Needham A genealogic study of dragon-fly wing venation, Proc. U.S. Natn. Mus., Volume 26 (1903), pp. 703-764

[20] T. Deubel; S. Wanke; C. Weber; F. Wedekind Modelling and manufacturing of a dragonfly wing as basis for bionic research (D. Marjanovic, ed.), Proceedings of the 9th International Design Conference (DESIGN 2006), 2006, pp. 215-220

[21] H. Hu; M. Tamai Bioinspired corrugated airfoil at low Reynolds numbers, J. Aircraft, Volume 45 (2008), pp. 2068-2077

[22] M. Okamoto; K. Yasuda; A. Azuma Aerodynamic characteristics of the wings and body of a dragonfly, J. Exp. Biol., Volume 199 (1996), pp. 281-294

[23] S. Sunada; L.J. Zeng; K. Kawachi The relationship between dragonfly wing structure and torsional deformation, J. Theor. Biol., Volume 193 (1998), pp. 39-45

[24] K. Machida; T. Oikawa; J. Shimanuki The effect of the costal vein configuration of the wings of a dragonfly, Key Eng. Mater., Volume 326–328 (2006), pp. 819-822

[25] K. Machida; T. Oikawa Structure analyses of the wings of anotogaster sieboldii and hybris subjacens, Key Eng. Mater., Volume 345–346 (2007), pp. 1237-1240

[26] R.J. Wootton; D.J.S. Newman Evolution, diversification, and mechanics of dragonfly wings (Alex Córdoba-Aguilar, ed.), Dragonflies and Damselflies: Model Organisms for Ecological and Evolutionary Research, Oxford University Press, UK, 2008

[27] D.W. Bechert; R. Meyer; W. Hage Drag reduction of airfoils with miniflaps. Can we learn from dragonflies?, Fluids, Volume 19–22 (2000), pp. 1-30

[28] S.R. Jongerius; D. Lentink Structural analysis of a dragonfly wing, Exp. Mech., Volume 50 (2010), pp. 1323-1334

[29] D.J.S. Newman, The functional wing morphology of some Odonata, PhD thesis, University of Exeter, Exeter, Devon, UK, 1982.

[30] M. Yadav Biology of Insects, Discovery Publishing House Press, New Delhi, India, 2003

[31] R.A. Norberg The pterostigma of insect wings, an inertial regulator of wing pitch, J. Comp. Physiol., Volume 81 (1972), pp. 9-22

[32] X.S. Wang; Y. Li; Y.F. Shi Effects of sandwich microstructures on mechanical behaviors of dragonfly wing vein, Compos. Sci. Tech., Volume 68 (2008), pp. 186-192

[33] M. Darvizeh; A. Darvizeh; H. Rajabi; A. Rezaei Free vibration analysis of dragonfly wings using finite element method, Int. J. Multiphysics, Volume 3 (2009), pp. 101-110

[34] S. Sudo; K. Tsuyuki; T. Ikohagi; F. Ohta; S. Shida; J. Tani A study on the wing structure and flapping behavior of a dragonfly, JSME Int. J., Volume 42 (1999), pp. 721-729

[35] A.B. Kesel Aerodynamic characteristics of dragonfly wing sections compared with technical aerofoils, J. Exp. Biol., Volume 203 (2000), pp. 3125-3135

[36] S.N. Gorb; A. Kesel; J. Berger Microsculpture of the wing surface in Odonata: evidence for cuticular wax covering, Arthropod Struct. Dev., Volume 29 (2000), pp. 129-135

[37] P. Kreuz; W. Arnold; A.B. Kesel Acoustic microscopic analysis of the biological structure of insect wing membranes with emphasis on their waxy surface, Ann. Biomed. Eng., Volume 29 (2001), pp. 1054-1058

[38] F. Song; K.W. Xiao; K. Bai; Y.L. Bai Microstructure and nanomechanical properties of the wing membrane of dragonfly, Mater. Sci. Eng. A, Volume 457 (2007), pp. 254-260

[39] S. Sudo; K. Tsuyuki; T. Kobayashi Experimental study on the collision of a droplet with a dragonfly wing, J. Jpn. Soc. Exp. Mech., Volume 5 (2005), pp. 272-279

[40] M. Nosonovsky; B. Bhushan Multiscale Dissipative Mechanisms and Hierarchical Surfaces: Friction, Superhydrophobicity, and Biomimetics, Springer-Verlag, Heidelberg, Germany, 2008

[41] T. Wagner; C. Neinhuis; W. Barthlott Wettability and contaminability of insect wings as a function of their surface sculptures, Acta Zoologica, Volume 77 (1996), pp. 213-225

[42] D.J.S. Newman; R.J. Wootton An approach to the mechanics of pleating in dragonfly wings, J. Exp. Biol., Volume 125 (1986), pp. 361-371

[43] S. Sudo; K. Tsuyuki; J. Tani Wing morphology of some insects, JSME Int. J., Volume 43 (2000), pp. 895-900

[44] W. Shyy; M. Berg; D. Ljungqvist Flapping and flexible wings for biological and micro airvehicles, Prog. Aerosp. Sci., Volume 35 (1999), pp. 455-505

[45] A. Azuma The Biokinetics of Flying and Swimming, American Institute of Aeronautics and Astronautics Inc., Virginia, 2006

[46] A. Vargas; R. Mittal; H.B. Dong A computational study of the aerodynamic performance of a dragonfly wing section in gliding flight, Bioinspir. Biomim., Volume 3 (2008), p. 026004

[47] P. Kreuz; A. Kesel; M. Kempf; M. Göken; H. Vehoff; W. Nachtigall Mechanische eigenschaften biologischer materialien am beispiel insektenflügel (W. Nachtigall; A. Wisser, eds.), Biona-Report 14, Fischer, Stuttgart, Germany, 1999

[48] P. Kreuz; A.B. Kesel; W. Arnold; H. Vehoff; W. Nachtigall Struktur- und Materialanalyse biologischer Systeme Die Flügelkutikula der Insekten (Odonata, Anisopter) (W. Nachtigall; A. Wisser, eds.), Biona-Report 14, Fischer, Stuttgart, Germany, 2000

[49] M. Kempf, Biological materials, determination of Youngʼs moduli of the insect cuticle (dragonflies, 2000; Anisoptera), Application note, Hysitron Inc, www.hysitron.com.

[50] J. Tong; Y.R. Zhao; J.Y. Sun; D.H. Chen Nanomechanical properties of the stigma of dragonfly Anax parthenope julius Brauer, J. Mater. Sci., Volume 42 (2007), pp. 2894-2898

[51] J.Y. Sun; C.X. Pan; J. Tong; J. Zhang Coupled model analysis of the structure and nano-mechanical properties of dragonfly wings, IET Nanobiotechnol., Volume 4 (2010), pp. 10-18

[52] B. Bhushan; X. Li Nanomechanical characterisation of solid surfaces and thin films, Intl. Mater. Rev., Volume 48 (2003), pp. 125-164

[53] B. Bhushan Springer Handbook of Nanotechnology, Springer-Verlag, Heidelberg, Germany, 2010

[54] B. Bhushan Nanotribology and Nanomechanics I – Measurement Techniques and Nanomechanics, II – Nanotribology, Biomimetics, and Industrial Applications, Springer-Verlag, Heidelberg, Germany, 2011

[55] S.P. Sane The aerodynamics of insect flight, J. Exp. Biol., Volume 206 (2003), pp. 4191-4208

[56] T. Weis-Fogh Quick estimates of flight fitness in hovering animals, including novel mechanisms for lift production, J. Exp. Biol., Volume 59 (1973), pp. 169-230

[57] M.J. Lighthill On the Weis-Fogh mechanism of lift generation, J. Fluid Mech., Volume 60 (1973), pp. 1-17

[58] T. Maxworthy Experiments on the Weis-Fogh mechanism of lift generation by insects in hovering flight. Part I. Dynamics of the ‘fling’, J. Fluid Mech., Volume 93 (1979), pp. 47-63

[59] G.R. Spedding; T. Maxworthy The generation of circulation and lift in a rigid two-dimensional fling, J. Fluid Mech., Volume 165 (1986), pp. 247-272

[60] G.R. Spedding; P.B.S. Lissaman Technical aspects of microscale flight systems, J. Avian. Biol., Volume 29 (1998), pp. 458-468

[61] Z.J. Wang Two dimensional mechanism for insect hovering, Phys. Rev. Lett., Volume 85 (2000), pp. 2216-2219

[62] C. Somps; M. Luttges Dragonfly flight – novel uses of unsteady separated flows, Science, Volume 228 (1985), pp. 1326-1329

[63] J.M. Wakeling; C.P. Ellington Dragonfly flight I: gliding flight and steady-state aerodynamic forces, J. Exp. Biol., Volume 200 (1997), pp. 543-556

[64] T.A. Swanson, An experimental and numerical investigation of flapping and plunging wings, PhD thesis, Department of Mechanical & Aerospace Engineering, Missouri University of Science and Technology, Rolla, Missouri, 2009.

[65] B.G. Newman; S.B. Savage; D. Schouelia Model test on a wing section of a dragonfly in scale effects in animal locomotion (T.J. Pedley, ed.), Scale Effects in Animal Locomotion, Academic Press, London, UK, 1977, pp. 445-477

[66] A.L.R. Thomas; G.K. Taylor; R.B. Srygley; R.L. Nudds; R.J. Bomphrey Dragonfly flight: free-flight and tethered flow visualizations reveal a diverse array of unsteady liftgenerating mechanisms, controlled primarily via angle of attack, J. Expl. Biol., Volume 207 (2004), pp. 4299-4323

[67] J.T. Murphy; H. Hu An experimental study of a bio-inspired corrugated airfoil for micro air vehicle applications, Exp. Fluids, Volume 49 (2010), pp. 531-546

[68] J.K. Shang; S.A. Combes; B.M. Finio; R.J. Wood Artificial insect wings of diverse morphology for flapping-wing micro air vehicles, Bioinspir. Biomim., Volume 4 (2009), p. 036002

[69] H. Tanaka; K. Matsumoto; I. Shimoyama Fabrication of a three-dimensional insect–wing model by micromolding of thermosetting resin with a thin elastmeric mold, J. Micromech. Microeng., Volume 17 (2007), pp. 2485-2490

[70] K.N. Shivakumar, S. Lingaiah, Ultra lightweight materials for bio-inspired microsystems, in: T. Ishikawa (Ed.), Proceedings of 16th International Conference on Composite Materials (ICCM-16), Kyoto, Japan, July 8–13, 2007.

[71] D.E. Levy; A. Seifert Simplified dragonfly airfoil aerodynamics at Reynolds numbers below 8000, Phys. Fluids, Volume 21 (2009), p. 071901

[72] H. Tanaka; R.J. Wood Fabrication of corrugated artificial insect wings using laser micromachined molds, J. Micromech. Microeng., Volume 20 (2010), p. 075008

[73] K. Tsuyuki; S. Sudo; J. Tani Morphology of insect wings and airflow produced by flapping insects, J. Intell. Mater. Syst. Struct., Volume 17 (2006), pp. 743-751

  • Die Chen; Lin Fu; Csaba Hefler; Tian Ji; Ryusuke Noda; Michael Pittman; Huihe Qiu; Wei Shyy; Qing Zhang Perspectives on low-Reynolds-number aerodynamics: shape, motion and structure, Acta Mechanica Sinica, Volume 41 (2025) no. 7 | DOI:10.1007/s10409-025-25312-x
  • Xin Dong; Leijiang Yao; Hongjun Liu; You Ding Dragonfly-Inspired 3D Bionic Folding Grid Structure Design, Applied Sciences, Volume 15 (2025) no. 3, p. 1673 | DOI:10.3390/app15031673
  • Yuchen Gong; Jiacheng Guo; Alexander He; Ye Sun; Haibo Dong Numerical Analysis of the Aerodynamic Interactions in Tandem Flying Snake Airfoils, Biomimetics, Volume 10 (2025) no. 3, p. 174 | DOI:10.3390/biomimetics10030174
  • Sen Lin; Nengzhuo Chou; Guangyao Li; Dingwen Bao; Yong Cai; Yi Min Xie; Guoping Wang A gradient-evolutionary coupled topology optimization for sheet reinforcement based on the mechanics of Voronoi pattern on dragonfly wings, Advances in Engineering Software, Volume 190 (2024), p. 103600 | DOI:10.1016/j.advengsoft.2024.103600
  • Firas Breish; Christian Hamm; Simone Andresen Nature’s Load-Bearing Design Principles and Their Application in Engineering: A Review, Biomimetics, Volume 9 (2024) no. 9, p. 545 | DOI:10.3390/biomimetics9090545
  • Hisako Sato; Jun Koshoubu; Sayako Inoué; Izuru Kawamura; Akihiko Yamagishi Multidimensional vibrational circular dichroism for insect wings: Comparison of species, Chirality, Volume 36 (2024) no. 3 | DOI:10.1002/chir.23655
  • Bharat Bhushan Introduction, Introduction to Biomimetics and Bioinspiration (2024), p. 1 | DOI:10.1007/978-3-031-62344-8_1
  • Bharat Bhushan Mosquitoes’ Locomotion and Painless Piercing, Introduction to Biomimetics and Bioinspiration (2024), p. 727 | DOI:10.1007/978-3-031-62344-8_15
  • Chien-Chih Lin; Cheng-Che Tung; Yung-Ya Chuang; Po-Yu Chen Bio-inspired structural optimization of three-dimensional Voronoi structures using genetic algorithms: Inspirations from avian wing bones, Materials Design, Volume 248 (2024), p. 113501 | DOI:10.1016/j.matdes.2024.113501
  • Hisako Sato; Sayako Inoué; Jun Yoshida; Izuru Kawamura; Jun Koshoubu; Akihiko Yamagishi Microscopic vibrational circular dichroism on the forewings of a European hornet: heterogenous sequences of protein domains with different secondary structures, Physical Chemistry Chemical Physics, Volume 26 (2024) no. 25, p. 17918 | DOI:10.1039/d4cp01827c
  • Chao Wu; Fan Lin; Xiaochuan Pan; Yingjun Zeng; Guochun Chen; Lida Xu; Yanzhang Fu; Yingping He; Qinnan Chen; Daoheng Sun; Zhenyin Hai Bioinspired High Tolerant Vein–Membrane Al2O3 Coating, Advanced Functional Materials, Volume 33 (2023) no. 30 | DOI:10.1002/adfm.202215135
  • Hao Zheng; Hossein Mofatteh; Marton Hablicsek; Abdolhamid Akbarzadeh; Masoud Akbarzadeh Dragonfly‐Inspired Wing Design Enabled by Machine Learning and Maxwell's Reciprocal Diagrams, Advanced Science, Volume 10 (2023) no. 18 | DOI:10.1002/advs.202207635
  • Liang WANG; Bifeng SONG; Zhongchao SUN; Xiaojun YANG Review on ultra-lightweight flapping-wing nano air vehicles: Artificial muscles, flight control mechanism, and biomimetic wings, Chinese Journal of Aeronautics, Volume 36 (2023) no. 6, p. 63 | DOI:10.1016/j.cja.2023.03.031
  • Mahdi Rezvani Tavakol; Mahdi Yarmohammad Tooski; Mohsen Jabbari; Mehrdad Javadi Experimental and numerical investigation of the effect of graphene nanoparticles on the strength of sandwich structures under low-velocity impact, Functional Composites and Structures, Volume 5 (2023) no. 1, p. 015002 | DOI:10.1088/2631-6331/acb88f
  • Umang H. Rathod; Vinayak Kulkarni; Ujjwal K. Saha Development of a Novel Drag-Based Vertical-Axis Wind Rotor Inspired from Orange Sea-Pen, Sustainable Energy Generation and Storage (2023), p. 1 | DOI:10.1007/978-981-99-2088-4_1
  • Chinmai Bhat; Ajeet Kumar; Shang-Chih Lin; Jeng-Ywan Jeng A novel bioinspired architectured materials with interlocking designs based on tessellation, Additive Manufacturing, Volume 58 (2022), p. 103052 | DOI:10.1016/j.addma.2022.103052
  • Igor Zhilyaev; Nitesh Anerao; Ajay Giri Prakash Kottapalli; Mahmut Cihat Yilmaz; Mustafa Murat; Mostafa Ranjbar; Anastasiia Krushynska Fully-printed metamaterial-type flexible wings with controllable flight characteristics, Bioinspiration Biomimetics, Volume 17 (2022) no. 2, p. 025002 | DOI:10.1088/1748-3190/ac42e2
  • Xu Ye; Yuanyuan Li; Yan Zhang; Ping Wang A Comprehensive Review: Recent Developments of Biomimetic Sensors, Journal of Bionic Engineering, Volume 19 (2022) no. 4, p. 853 | DOI:10.1007/s42235-022-00181-5
  • Zuzanna Kunicka-Kowalska; Michał Landowski; Krzysztof Sibilski Deformable model of a butterfly in motion on the example of Attacus atlas, Journal of the Mechanical Behavior of Biomedical Materials, Volume 133 (2022), p. 105351 | DOI:10.1016/j.jmbbm.2022.105351
  • Pablo Yepiz-Graciano; Zeferino Ibarra-Borja; Roberto Ramírez Alarcón; Gerardo Gutiérrez-Torres; Héctor Cruz-Ramírez; Dorilian Lopez-Mago; Alfred B. U’Ren Quantum Optical Coherence Microscopy for Bioimaging Applications, Physical Review Applied, Volume 18 (2022) no. 3 | DOI:10.1103/physrevapplied.18.034060
  • Chinmai Bhat; Ajeet Kumar; Shang-Chih Lin; Jeng Ywan Jeng A Novel Bio-Inspired Advanced Functional Architectured Materials with Interlocking Designs for Multi-Functional Properties, SSRN Electronic Journal (2022) | DOI:10.2139/ssrn.4122442
  • Carina Lietz; Clemens F. Schaber; Stanislav N. Gorb; Hamed Rajabi The damping and structural properties of dragonfly and damselfly wings during dynamic movement, Communications Biology, Volume 4 (2021) no. 1 | DOI:10.1038/s42003-021-02263-2
  • Yung Jeh Chu; Poo Balan Ganesan; Mohamad Azlin Ali Fluid–structure interaction simulation on flight performance of a dragonfly wing under different pterostigma weights, Journal of Mechanics, Volume 37 (2021), p. 216 | DOI:10.1093/jom/ufaa013
  • Moshan Guo; Gangtie Zheng Stigma as two degrees of freedom energy sink for flutter suppression, Journal of Sound and Vibration, Volume 515 (2021), p. 116441 | DOI:10.1016/j.jsv.2021.116441
  • Zhang Zhihao; Ito Makoto; Wang Xishu; Liu Jinsheng The Effect of Bionic 3D Printed Structure Morphology on Skin Friction, Journal of Tribology, Volume 143 (2021) no. 5 | DOI:10.1115/1.4050138
  • JianHua Xu; Tong Liu; Yongzheng Zhang; YaNa Zhang; Kai Wu; Chuxin Lei; Qiang Fu; JiaJun Fu Dragonfly wing-inspired architecture makes a stiff yet tough healable material, Matter, Volume 4 (2021) no. 7, p. 2474 | DOI:10.1016/j.matt.2021.05.001
  • Meng Chen; Da-Hui Qu; He Tian Dragonfly-wing-inspired polymer design for property enhancement, Matter, Volume 4 (2021) no. 8, p. 2674 | DOI:10.1016/j.matt.2021.07.005
  • Henrik Ronellenfitsch Optimal Elasticity of Biological Networks, Physical Review Letters, Volume 126 (2021) no. 3 | DOI:10.1103/physrevlett.126.038101
  • Mehdi Rezvani Tavakol; Mehdi Yarmohammad Tooski; Mohsen Jabbari; Mehrdad Javadi Effect of graphene nanoparticles on the strength of sandwich structure inspired by dragonfly wings under low‐velocity impact, Polymer Composites, Volume 42 (2021) no. 10, p. 5249 | DOI:10.1002/pc.26219
  • Vera Stelzer; Lars Krenkel; Julius Griškevičius 2D numerical investigations derived from a 3D dragonfly wing captured with a high-resolution micro-CT, Technology and Health Care, Volume 30 (2021) no. 1, p. 283 | DOI:10.3233/thc-219010
  • Dinh Quang Nguyen; Giuseppe Loianno; Van Anh Ho, 2020 3rd IEEE International Conference on Soft Robotics (RoboSoft) (2020), p. 464 | DOI:10.1109/robosoft48309.2020.9115983
  • Buyuan Guo; Fengya Zhang; Jiajia Zhang, 2020 International Conference on Artificial Intelligence and Electromechanical Automation (AIEA) (2020), p. 172 | DOI:10.1109/aiea51086.2020.00043
  • Matthew A. Bakowski; Kaleb Radford; Craig G. Merrett, AIAA Scitech 2020 Forum (2020) | DOI:10.2514/6.2020-2293
  • Nasim Chitsaz; Romeo Marian; Amirmasoud Chitsaz; Javaan S. Chahl Parametric and Statistical Study of the Wing Geometry of 75 Species of Odonata, Applied Sciences, Volume 10 (2020) no. 15, p. 5389 | DOI:10.3390/app10155389
  • Longhai Li; Ce Guo; Yiting Chen; Yinhe Chen Optimization design of lightweight structure inspired by glass sponges (Porifera, Hexacinellida) and its mechanical properties, Bioinspiration Biomimetics, Volume 15 (2020) no. 3, p. 036006 | DOI:10.1088/1748-3190/ab6ca9
  • Siyang Gao; Bangcheng Zhang; Jianwei Sun; Wenrui Liu A disigned method of the surface structure of suspended glass transport device based bionic structure of dragonfly wings, Industrial Lubrication and Tribology, Volume 72 (2020) no. 10, p. 1245 | DOI:10.1108/ilt-09-2019-0389
  • H. Rajabi; S.N. Gorb How do dragonfly wings work? A brief guide to functional roles of wing structural components, International Journal of Odonatology, Volume 23 (2020) no. 1, p. 23 | DOI:10.1080/13887890.2019.1677515
  • Shu-Ting Huang; Hai-Rui Wang; Wan-Qin Yang; Ya-Chu Si; Yu-Tian Wang; Meng-Lian Sun; Xin Qi; Yi Bai Phylogeny of Libellulidae (Odonata: Anisoptera): comparison of molecular and morphology-based phylogenies based on wing morphology and migration, PeerJ, Volume 8 (2020), p. e8567 | DOI:10.7717/peerj.8567
  • Hana Šigutová; Martin Šigut; Alexander Kovalev; Stanislav N. Gorb Wing wettability gradient in a damselflyLestes sponsa(Odonata: Lestidae) reflects the submergence behaviour during underwater oviposition, Royal Society Open Science, Volume 7 (2020) no. 12, p. 201258 | DOI:10.1098/rsos.201258
  • Jiyu Sun; Chao Liu; Fadong Li; Bharat Bhushan; Wei Wu; Jin Tong Effect of vein microstructure and nanomechanical behaviors on wind-resistant performance of Asian ladybeetle hindwing, Tribology International, Volume 142 (2020), p. 105719 | DOI:10.1016/j.triboint.2019.04.003
  • Chunxiang Pan; Xiaoyan Qi; Qingbo Hao, 2019 IEEE International Conference on Manipulation, Manufacturing and Measurement on the Nanoscale (3M-NANO) (2019), p. 197 | DOI:10.1109/3m-nano46308.2019.8947373
  • Yael Politi; Benny Bar-On; Helge-Otto Fabritius Mechanics of Arthropod Cuticle-Versatility by Structural and Compositional Variation, Architectured Materials in Nature and Engineering, Volume 282 (2019), p. 287 | DOI:10.1007/978-3-030-11942-3_10
  • Sheng Zhang; Masayuki Ochiai; Yuta Sunami; Hiromu Hashimoto Influence of Microstructures on Aerodynamic Characteristics for Dragonfly Wing in Gliding Flight, Journal of Bionic Engineering, Volume 16 (2019) no. 3, p. 423 | DOI:10.1007/s42235-019-0034-3
  • Jiyu Sun; Chao Liu; Bharat Bhushan A review of beetle hindwings: Structure, mechanical properties, mechanism and bioinspiration, Journal of the Mechanical Behavior of Biomedical Materials, Volume 94 (2019), p. 63 | DOI:10.1016/j.jmbbm.2019.02.031
  • Bharat Bhushan Lessons from nature for green science and technology: an overview and bioinspired superliquiphobic/philic surfaces, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, Volume 377 (2019) no. 2138, p. 20180274 | DOI:10.1098/rsta.2018.0274
  • Amit Kumar; Navin Kumar; Rakesh Das; Piyush Lakhani; Bharat Bhushan In vivostructural dynamic analysis of the dragonfly wing: the effect of stigma as its modulator, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, Volume 377 (2019) no. 2150, p. 20190132 | DOI:10.1098/rsta.2019.0132
  • Paavo Bergmann; Sandra Richter; Nina Glöckner; Oliver Betz Morphology of hindwing veins in the shield bug Graphosoma italicum (Heteroptera: Pentatomidae), Arthropod Structure Development, Volume 47 (2018) no. 4, p. 375 | DOI:10.1016/j.asd.2018.04.004
  • Bharat Bhushan Introduction, Biomimetics, Volume 279 (2018), p. 1 | DOI:10.1007/978-3-319-71676-3_1
  • Bharat Bhushan Insects Locomotion, Piercing, Sucking and Stinging Mechanisms, Biomimetics, Volume 279 (2018), p. 819 | DOI:10.1007/978-3-319-71676-3_20
  • A. Arjangpay; A. Darvizeh; M. Yarmohammad Tooski; R. Ansari An experimental and numerical investigation on low velocity impact response of a composite structure inspired by dragonfly wing configuration, Composite Structures, Volume 184 (2018), p. 327 | DOI:10.1016/j.compstruct.2017.10.006
  • Azadeh Arjangpay; Abolfazl Darvizeh; Mehdi Yarmohammad Tooski Effects of Structural Characteristics of a Bionic Dragonfly Wing on Its Low Velocity Impact Resistance, Journal of Bionic Engineering, Volume 15 (2018) no. 5, p. 859 | DOI:10.1007/s42235-018-0073-1
  • Alexander Blanke Analysis of modularity and integration suggests evolution of dragonfly wing venation mainly in response to functional demands, Journal of The Royal Society Interface, Volume 15 (2018) no. 145, p. 20180277 | DOI:10.1098/rsif.2018.0277
  • Dev Gurera; Bharat Bhushan; Navin Kumar Lessons from mosquitoes’ painless piercing, Journal of the Mechanical Behavior of Biomedical Materials, Volume 84 (2018), p. 178 | DOI:10.1016/j.jmbbm.2018.05.025
  • Bharat Bhushan Insects locomotion, piercing, sucking and stinging mechanisms, Microsystem Technologies, Volume 24 (2018) no. 12, p. 4703 | DOI:10.1007/s00542-018-4175-9
  • Sheng Zhang; Yuta Sunami; Hiromu Hashimoto Deformation behavior of dragonfly-inspired nodus structured wing in gliding flight through experimental visualization approach, Scientific Reports, Volume 8 (2018) no. 1 | DOI:10.1038/s41598-018-24237-x
  • E Salami; E Montazer; T A Ward; P B Ganesan Nano-mechanical properties and structural of a 3D-printed biodegradable biomimetic micro air vehicle wing, IOP Conference Series: Materials Science and Engineering, Volume 210 (2017), p. 012073 | DOI:10.1088/1757-899x/210/1/012073
  • Xishu Wang; Zhihao Zhang; Huaihui Ren; Yinglong Chen; Bisheng Wu Role of soft matter in the sandwich vein of dragonfly wing in its configuration and aerodynamic behaviors, Journal of Bionic Engineering, Volume 14 (2017) no. 3, p. 557 | DOI:10.1016/s1672-6529(16)60421-3
  • Praveena N. Sivasankaran; Thomas A. Ward Spatial network analysis to construct simplified wing structural models for Biomimetic Micro Air Vehicles, Aerospace Science and Technology, Volume 49 (2016), p. 259 | DOI:10.1016/j.ast.2015.12.005
  • V. Rubentheren; Thomas A. Ward; Ching Yern Chee; Praveena Nair; Erfan Salami; Christopher Fearday Effects of heat treatment on chitosan nanocomposite film reinforced with nanocrystalline cellulose and tannic acid, Carbohydrate Polymers, Volume 140 (2016), p. 202 | DOI:10.1016/j.carbpol.2015.12.068
  • Praveena Nair Sivasankaran; Thomas Arthur Ward; Rubentheren Viyapuri; Mohd Rafie Johan Static strength analysis of dragonfly inspired wings for biomimetic micro aerial vehicles, Chinese Journal of Aeronautics, Volume 29 (2016) no. 2, p. 411 | DOI:10.1016/j.cja.2016.02.007
  • Yanru Zhao; Dongsheng Wang; Jin Tong; Jiyu Sun Nanomechanical Behaviour of the Membranous Wings of Dragonfly Pantala flavescens Fabricius, Journal of Bionic Engineering, Volume 13 (2016) no. 3, p. 388 | DOI:10.1016/s1672-6529(16)60312-8
  • Jorge M. M. Barata; Fernando M. S. P. Neves; Pedro A. R. Manquinho; Telmo A. J. Silva Propulsion for Biological Inspired Micro-Air Vehicles (MAVs), Open Journal of Applied Sciences, Volume 06 (2016) no. 01, p. 7 | DOI:10.4236/ojapps.2016.61002
  • Jin Tong; Zhiyong Chang; Xiao Yang; Jin Zhang; Xianping Liu; Derek G. Chetwynd; Donghui Chen; Jiyu Sun Nanoindentation mechanical properties and structural biomimetic models of three species of insects wings, Journal of Wuhan University of Technology-Mater. Sci. Ed., Volume 30 (2015) no. 4, p. 831 | DOI:10.1007/s11595-015-1238-y
  • Siti Fauziyah; Catharina Alam; R.C.H. Soesilohadi; Bambang Retnoaji; Parvez Alam Morphological and mechanical characterisation of the hindwing nodus from the Libellulidae family of dragonfly (Indonesia), Arthropod Structure Development, Volume 43 (2014) no. 5, p. 415 | DOI:10.1016/j.asd.2014.06.004
  • JIYU SUN; MINGZE LING; CHUNXIANG PAN; DONGHUI CHEN; JIN TONG; XIN LI BIOMIMETIC STRUCTURE DESIGN OF DRAGONFLY WING VENATION USING TOPOLOGY OPTIMIZATION METHOD, Journal of Mechanics in Medicine and Biology, Volume 14 (2014) no. 04, p. 1450078 | DOI:10.1142/s021951941450078x
  • Xiu‐Juan Li; Zhi‐Hui Zhang; Yun‐Hong Liang; Lu‐Quan Ren; Meng Jie; Zhi‐Gang Yang Antifatigue properties of dragonfly Pantala flavescens wings, Microscopy Research and Technique, Volume 77 (2014) no. 5, p. 356 | DOI:10.1002/jemt.22352
  • Michelle Lee Dragonfly Wings: Special Structures for Aerial Acrobatics, Remarkable Natural Material Surfaces and Their Engineering Potential (2014), p. 65 | DOI:10.1007/978-3-319-03125-5_6
  • H. Rajabi; A. Darvizeh Experimental investigations of the functional morphology of dragonfly wings, Chinese Physics B, Volume 22 (2013) no. 8, p. 088702 | DOI:10.1088/1674-1056/22/8/088702
  • Rupan Talucdher; Kunigal Shivakumar Tensile Properties of Veins of Damselfly Wing, Journal of Biomaterials and Nanobiotechnology, Volume 04 (2013) no. 03, p. 247 | DOI:10.4236/jbnb.2013.43031
  • LuQuan Ren; XiuJuan Li Functional characteristics of dragonfly wings and its bionic investigation progress, Science China Technological Sciences, Volume 56 (2013) no. 4, p. 884 | DOI:10.1007/s11431-013-5158-9
  • Jiyu Sun; Bharat Bhushan Structure and mechanical properties of beetle wings: a review, RSC Advances, Volume 2 (2012) no. 33, p. 12606 | DOI:10.1039/c2ra21276e

Cité par 71 documents. Sources : Crossref

Commentaires - Politique