The present interest in micro air vehicles has given the research on bat flight a new impulse. With the use of high speed cameras and improved PIV techniques, the kinematics and aerodynamics of bats have been studied in great detail. A robotic flapper makes it possible to do measurements by systematically changing only one parameter at a time and investigate the parameter space outside the natural flight envelope of bats without risking animal safety. For this study, a robotic flapper (RoBat), inspired by Leptonycteris yerbabuenae was developed and tested over the speed range 1–7 m/s, with variable maximum angles of attacks (
Gide Koekkoek 1, 2 ; Florian T. Muijres 1 ; L. Christoffer Johansson 1 ; Melanie Stuiver 1, 2 ; Bas W. van Oudheusden 2 ; Anders Hedenström 1
@article{CRMECA_2012__340_1-2_95_0, author = {Gide Koekkoek and Florian T. Muijres and L. Christoffer Johansson and Melanie Stuiver and Bas W. van Oudheusden and Anders Hedenstr\"om}, title = {Stroke plane angle controls leading edge vortex in a bat-inspired flapper}, journal = {Comptes Rendus. M\'ecanique}, pages = {95--106}, publisher = {Elsevier}, volume = {340}, number = {1-2}, year = {2012}, doi = {10.1016/j.crme.2011.11.013}, language = {en}, }
TY - JOUR AU - Gide Koekkoek AU - Florian T. Muijres AU - L. Christoffer Johansson AU - Melanie Stuiver AU - Bas W. van Oudheusden AU - Anders Hedenström TI - Stroke plane angle controls leading edge vortex in a bat-inspired flapper JO - Comptes Rendus. Mécanique PY - 2012 SP - 95 EP - 106 VL - 340 IS - 1-2 PB - Elsevier DO - 10.1016/j.crme.2011.11.013 LA - en ID - CRMECA_2012__340_1-2_95_0 ER -
%0 Journal Article %A Gide Koekkoek %A Florian T. Muijres %A L. Christoffer Johansson %A Melanie Stuiver %A Bas W. van Oudheusden %A Anders Hedenström %T Stroke plane angle controls leading edge vortex in a bat-inspired flapper %J Comptes Rendus. Mécanique %D 2012 %P 95-106 %V 340 %N 1-2 %I Elsevier %R 10.1016/j.crme.2011.11.013 %G en %F CRMECA_2012__340_1-2_95_0
Gide Koekkoek; Florian T. Muijres; L. Christoffer Johansson; Melanie Stuiver; Bas W. van Oudheusden; Anders Hedenström. Stroke plane angle controls leading edge vortex in a bat-inspired flapper. Comptes Rendus. Mécanique, Biomimetic flow control, Volume 340 (2012) no. 1-2, pp. 95-106. doi : 10.1016/j.crme.2011.11.013. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2011.11.013/
[1] Nature-inspired flight—beyond the leap, Bioinspiration & Biomimetics (2010), p. 040201 (9 pp)
[2] Bat flight generates complex aerodynamic tracks, Science, Volume 316 (2007), pp. 894-897
[3] High-speed stereo DPIV measurements of bat wakes flying freely in a wind tunnel, Experiments in Fluids, Volume 46 (2009), pp. 923-932
[4] The Trinity of Energy Conversion: Kinematics, Aerodynamics and Energetics of Lesser Long-Nosed Bat (Leptonycteris Yerbabuenae), Humboldt University, Berlin, 2010
[5] Direct measurements of the kinematics and dynamics of bat flight, Bioinspiration & Biomimetics, Volume 1 (2006), pp. S10-18
[6] The near and far wake of Pallasʼ long tongued bat (Glossophaga soricina), Journal of Experimental Biology, Volume 211 (2008), pp. 2909-2918
[7] Leading edge vortex improves lift in slow-flying bats, Science, Volume 319 (2008), pp. 1250-1253
[8] Time-resolved wake structure and kinematics of bat flight, Experiments in Fluids, Volume 46 (2009), pp. 933-943
[9] Wake structure and wing kinematics: The flight of the lesser dog-faced fruit bat, Cynopterus brachyotis, Journal of Experimental Biology, Volume 213 (2010), pp. 3427-3440
[10] Kinematics of flight and the relationship to the vortex wake of Pallasʼ long-tongued bat (Glossophaga soricina), Journal of Experimental Biology, Volume 213 (2010), pp. 2142-2153
[11] Comparative aerodynamic performance of flapping flight in two bat species using time-resolved wake visualization, Journal of the Royal Society Interface, Volume 8 (2011), pp. 1418-1428
[12] Wing beat kinematics of a nectar feeding bat, Glossophaga soricina, flying at different flight speeds and Strouhal numbers, Journal of Experimental Biology, Volume 209 (2006), pp. 3887-3897
[13] Actuator disk model and span efficiency of flapping flight in bats based on time-resolved PIV measurements, Experiments in Fluids, Volume 51 (2011), pp. 511-525
[14] Wind tunnel tests of wings at Reynolds numbers below 7000, Experiments in Fluids, Volume 23 (1997), pp. 405-409
[15] Organization of the primary somatosensory cortex and wing representation in the Big Brown Bat, Eptesicus fuscus, Journal of Comparative Physiology, Volume 197 (2011), pp. 89-96
[16] Bat wing sensors support flight control, Proceedings of the National Academy of Sciences, Volume 108 (2011), pp. 11291-11296
[17] Optimization of the motion of a flapping airfoil using sensitivity functions, Computers & Fluids, Volume 38 (2009), pp. 861-874
[18] Flight force production by flapping insect wings in inclined stroke plane kinematics, Computers & Fluids, Volume 39 (2010), pp. 683-695
[19] Wing rotation and the aerodynamic basis of insect flight, Science, Volume 284 (1999), pp. 1954-1960
[20] Experimental investigation of a flapping wing model, Journal of Experimental Biology, Volume 46 (2008), pp. 945-961
[21] The importance of leading edge vortices under simplified flapping flight conditions at the size scale of birds, Journal of Experimental Biology, Volume 213 (2010), pp. 1930-1939
[22] G. Bunget, BATMAV – A bio-inspired micro-aerial vehicle for flapping flight, 2010.
[23] Foraging behaviour and energetics of a nectar-feeding bat, Leptonycteris curasoae (Chiroptera: Phyllostomidae), Journal of Zoology, Volume 244 (1998), pp. 575-586
[24] Flight speeds and mechanical power outputs of the nectar-feeding bat, Leptonycteris curasoae (Phyllostomidae: Glossophaginae), Journal of Mammalogy, Volume 74 (1993), pp. 594-600
[25] Wing structure and the aerodynamic basis of flight in bats, American Institute of Aeronautics and Astronautics Journal (2007), pp. 2007-2042
[26] Mechanical properties of bat wing membrane skin, Journal of Zoology, Volume 239 (1996), pp. 357-378
[27] Biomechanics of the bat limb skeleton: Scaling material properties and mechanics, Cells Tissues Organs, Volume 187 (2008), pp. 59-84
[28] A new low-turbulence wind tunnel for bird flight experiments at Lund University, Sweden, Journal of Experimental Biology, Volume 200 (1997), pp. 1441-1449
[29] Software techniques for two- and three-dimensional kinematic measurements of biological and biomimetic systems, Bioinspiration & Biomimetics, Volume 3 (2008), p. 034001 (6 pp)
[30] Analysis and interpretation of instantaneous turbulent velocity fields, Experiments in Fluids, Volume 29 (2000), pp. 275-290
[31] D. Lentink, Exploring the biofluiddynamics of swimming and flight, PhD Thesis, Wageningen University, 2008.
[32] Rotational accelerations stabilize leading edge vortices on revolving fly wings, Journal of Experimental Biology, Volume 212 (2009), pp. 2705-2719
[33] Bone density and the lightweight skeletons of birds, Proceedings of the Royal Society B, Volume 277 (2010), pp. 2193-2198
Cité par Sources :
Commentaires - Politique
Vous devez vous connecter pour continuer.
S'authentifier