Plasma acceleration with electron or proton driver beams is a challenging opportunity for high-energy physics. An energy doubling experiment with electron drivers was successfully performed at SLAC and a key experiment AWAKE with proton drivers is on schedule at CERN. Simulations play an important role in choosing the best experimental conditions and in interpreting the results. The Vlasov equation is the theoretical tool to describe the interaction of a driver particle beam or a driver laser pulse with a plasma. Collective effects, such as tune shift and mismatch instabilities, appear in high intensity standard accelerators and are described by the Poisson–Vlasov equation. In the paper, we review the Vlasov equation in the electrostatic and fully electromagnetic cases. The general framework of variational principles is used to derive the equation, the local form of the balance equations and related conservation laws. In the electrostatic case, we remind the analytic Kapchinskij–Vladimirskij (K–V) model and we propose an extension of the adiabatic theory for Hamiltonian systems, which ensures stability for perturbation of size ϵ on times of order . The variational framework is used to derive the Maxwell–Vlasov equations and related conservation laws and to briefly sketch the particle-in-cell (PIC) approximation schemes. Finally, the proton-driven acceleration is examined in the linear and quasi-linear regime. A PIC simulation with the code ALaDyn developed at Bologna University is presented to illustrate the longitudinal and transverse fields evolution which allow a witness electron bunch to be accelerated with a gradient of a few GeV/m. We also present some remarks on future perspectives.
Accepté le :
Publié le :
Armando Bazzani 1, 2 ; Massimo Giovannozzi 3 ; Pasquale Londrillo 2 ; Stefano Sinigardi 1, 2, 4 ; Giorgio Turchetti 1, 2
@article{CRMECA_2014__342_10-11_647_0, author = {Armando Bazzani and Massimo Giovannozzi and Pasquale Londrillo and Stefano Sinigardi and Giorgio Turchetti}, title = {Case studies in space charge and plasma acceleration of charged beams}, journal = {Comptes Rendus. M\'ecanique}, pages = {647--661}, publisher = {Elsevier}, volume = {342}, number = {10-11}, year = {2014}, doi = {10.1016/j.crme.2014.07.004}, language = {en}, }
TY - JOUR AU - Armando Bazzani AU - Massimo Giovannozzi AU - Pasquale Londrillo AU - Stefano Sinigardi AU - Giorgio Turchetti TI - Case studies in space charge and plasma acceleration of charged beams JO - Comptes Rendus. Mécanique PY - 2014 SP - 647 EP - 661 VL - 342 IS - 10-11 PB - Elsevier DO - 10.1016/j.crme.2014.07.004 LA - en ID - CRMECA_2014__342_10-11_647_0 ER -
%0 Journal Article %A Armando Bazzani %A Massimo Giovannozzi %A Pasquale Londrillo %A Stefano Sinigardi %A Giorgio Turchetti %T Case studies in space charge and plasma acceleration of charged beams %J Comptes Rendus. Mécanique %D 2014 %P 647-661 %V 342 %N 10-11 %I Elsevier %R 10.1016/j.crme.2014.07.004 %G en %F CRMECA_2014__342_10-11_647_0
Armando Bazzani; Massimo Giovannozzi; Pasquale Londrillo; Stefano Sinigardi; Giorgio Turchetti. Case studies in space charge and plasma acceleration of charged beams. Comptes Rendus. Mécanique, Volume 342 (2014) no. 10-11, pp. 647-661. doi : 10.1016/j.crme.2014.07.004. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2014.07.004/
[1] Laser electron accelerator, Phys. Rev. Lett., Volume 43 ( July 1979 ), pp. 267-270
[2] Acceleration of electrons by the interaction of a bunched electron beam with a plasma, Phys. Rev. Lett., Volume 54 ( Feb. 1985 ), pp. 693-696
[3] Energy transfer in the plasma wake-field accelerator, Phys. Rev. Lett., Volume 56 ( Mar. 1986 ), pp. 1252-1255
[4] GeV electron beams from a centimetre-scale accelerator, Nat. Phys., Volume 2 ( October 2006 ), pp. 696-699
[5] et al. Energy doubling of 42 GeV electrons in a metre-scale plasma wakefield accelerator, Nature, Volume 445 (2007), pp. 741-744
[6] Proton-driven plasma-wakefield acceleration, Nat. Phys., Volume 5 ( May 2009 ), pp. 363-367
[7] Limitations of proton beam current in a strong focusing linear accelerator associated with the beam space charge, HEACC 59 (1959), pp. 274-287
[8] Theory and Design of Charged Particle Beams, Wiley Series in Beam Physics and Accelerator Technology, Wiley, 2008
[9] A Lagrangian formulation of the Boltzmann–Vlasov equation for plasmas, Proc. R. Soc. Lond. Ser. A, Math. Phys. Sci., Volume 248 (1958) no. 1253, pp. 282-287
[10] Variational principle and stability of nonmonotonic Vlasov–Poisson equilibria, Z. Naturforsch., Volume 42a (1987), pp. 1115-1123
[11] Mathematical models in beam dynamics (P. Cerrai; P. Freguglia; C. Pellegrini, eds.), The Application of Mathematics to the Sciences of Nature, Springer, 2002, pp. 117-136
[12] A. Franchi, M. Comunian, A. Pisent, G. Turchetti, S. Rambaldi, et al., HALODYN: a 3D Poisson–Vlasov code to simulate the space charge effects in the high intensity TRASCO linac, 2002.
[13] The micromaps description of a beam with space charge, Il Nuovo Cimento A, Volume 112 (1999) no. 5, pp. 429-435
[14] et al. Towards the description of long term self-consistent effects in space charge induced resonance trapping, 2–6 October 2006, Chamonix Mont-Blanc, France (2006)
[15] MicroMAP library http://web-docs.gsi.de/~giuliano/micromap_manual/micromap_reference_manual.html
[16] Accuracy analysis of a spectral Poisson solver, Proceedings of the Workshop on High Intensity Beam Dynamics Coulomb05 Workshop on High Intensity Beam Dynamics, Nucl. Instrum. Methods A, Volume 561 (2006) no. 2, pp. 223-229
[17] Hamiltonian maps and normal forms for intense beams, Proceedings of the Workshop on High Intensity Beam Dynamics Coulomb05 Workshop on High Intensity Beam Dynamics, Nucl. Instrum. Methods A, Volume 561 (2006) no. 2, pp. 151-157
[18] Space-charge driven emittance growth in a 3D mismatched anisotropic beam, Phys. Rev. Lett., Volume 92 ( Apr. 2004 ), p. 174801
[19] Stability criteria of the Vlasov equation and quasi-stationary states of the HMF model, Phys. A, Stat. Mech. Appl., Volume 337 (2004) no. 1–2, pp. 36-66
[20] Stability of inhomogeneous states in mean-field models with an external potential, J. Stat. Mech. Theory Exp., Volume 2011 (2011) no. 03, p. P03022
[21] Mathematical Aspects of Classical and Celestial Mechanics, Encyclopaedia of Mathematical Sciences, Physica-Verlag, 2007
[22] Hamiltonian and Action principle formulations of plasma physics, Phys. Plasmas (1994–present), Volume 12 (2005) no. 5
[23] Action principles for the Vlasov equation, Phys. Fluids, B Plasma Phys. (1989–1993), Volume 4 (1992) no. 4, pp. 771-777
[24] New variational principle for the Vlasov–Maxwell equations, Phys. Rev. Lett., Volume 84 ( Jun. 2000 ), pp. 5768-5771
[25] A new Lagrangian formulation for laser-plasma interactions, Phys. Plasmas (1994–present), Volume 5 (1998) no. 4, pp. 1110-1117
[26] A.B. Stamm, B.A. Shadwick, E.G. Evstatiev, Variational formulation of macro-particle models for electromagnetic plasma simulations, ArXiv e-prints, October 2013.
[27] Variational formulation of particle algorithms for kinetic plasma simulations, J. Comput. Phys., Volume 245 (2013), pp. 376-398
[28] Computer Simulation Using Particles, Taylor & Francis, 2010
[29] The virtual particle electromagnetic particle-mesh method, Comput. Phys. Commun., Volume 64 (1991) no. 2, pp. 252-266
[30] ALaDyn: a high-accuracy PIC code for the Maxwell–Vlasov equations, IEEE Trans. Plasma Sci., Volume 36 ( Aug. 2008 ) no. 4, pp. 1790-1798
[31] Charge preserving high order PIC schemes, Coulomb'09 – Ions Acceleration with High Power Lasers: Physics and Applications, Nucl. Instrum. Methods A, Volume 620 (2010) no. 1, pp. 28-35
[32] Towards robust algorithms for current deposition and dynamic load-balancing in a GPU particle in cell code, AIP Conf. Proc., Volume 1507 (2012) no. 1, pp. 184-192
[33] Modeling asymmetric beams using higher-order phase-space moments, AIP Conf. Proc., Volume 1507 (2012) no. 1, pp. 393-398
[34] Hamiltonian reductions for modeling relativistic laser-plasma interactions, Commun. Nonlinear Sci. Numer. Simul., Volume 17 (2012) no. 5, pp. 2153-2160 (Special Issue: Mathematical Structure of Fluids and Plasmas, Dedicated to the 60th birthday of Phil Morrison)
[35] AWAKE design report: a proton-driven PlasmaWakeField Acceleration experiment at CERN, CERN, Geneva, Apr. 2013 (Technical Report CERN-SPSC-2013-013, SPSC-TDR-003)
[36] Simulation of proton driven plasma wakefield acceleration, Phys. Rev. Spec. Top., Accel. Beams, Volume 13 ( Apr. 2010 ), p. 041301
[37] Self-modulation instability of a long proton bunch in plasmas, Phys. Rev. Lett., Volume 104 ( Jun. 2010 ), p. 255003
[38] Plasma wakefield excitation with a 24 GeV proton beam, Plasma Phys. Control. Fusion, Volume 53 (2011) no. 1, p. 014003
[39] R. Assmann, M. Giovannozzi, Y. Papaphilippou, F. Zimmermann, A. Caldwell, G. Xia, Generation of short proton bunches in the CERN accelerator complex, CERN-ATS-2009-050, 4 p., Sep. 2009.
[40] E. Gschwendtner, C. Bracco, B. Goddard, M. Meddahi, A. Pardons, E. Shaposhnikova, H. Timko, F. Velotti, H. Vincke, Feasibility study of the AWAKE facility at CERN, CERN-ACC-2013-0275, 4 p., May 2013.
[41] Beam transfer line design for a plasma wakefield acceleration experiment AWAKE at the CERN SPS, CERN, Geneva, Jul. 2013 (Technical Report CERN-ACC-2013-0087)
[42] Short high-intensity bunches for plasma wakefield experiment AWAKE in the CERN SPS, CERN, Geneva, May 2013 (Technical Report CERN-ACC-2013-0208)
[43] Nonlinear electron oscillations in a cold plasma, Phys. Rev., Volume 113 ( Jan. 1959 ), pp. 383-387
[44] Controlled self-modulation of high energy beams in a plasma, Phys. Plasmas (1994–present), Volume 18 (2011) no. 2
[45] Phase velocity and particle injection in a self-modulated proton-driven plasma wakefield accelerator, Phys. Rev. Lett., Volume 107 ( Sep. 2011 ), p. 145003
[46] Growth and phase velocity of self-modulated beam-driven plasma waves, Phys. Rev. Lett., Volume 107 ( Sep. 2011 ), p. 145002
[47] Electron-hose instability in the ion-focused regime, Phys. Rev. Lett., Volume 67 ( Aug. 1991 ), pp. 991-994
[48] Optimum angle for side injection of electrons into linear plasma wakefields, J. Plasma Phys., Volume 78 (2012), pp. 455-459
[49] http://awake.web.cern.ch/awake/physics.html
[50] Acceleration and focusing of electrons in two-dimensional nonlinear plasma wake fields, Phys. Rev. A, Volume 44 ( Nov. 1991 ), p. R6189-R6192
[51] Energy loss of a high charge bunched electron beam in plasma: simulations, scaling, and accelerating wakefields, Phys. Rev. Spec. Top., Accel. Beams, Volume 7 ( Jun. 2004 ), p. 061302
[52] Limits of linear plasma wakefield theory for electron or positron beams, Phys. Plasmas (1994–present), Volume 12 (2005) no. 6
[53] Plasma wakefields in the quasi-nonlinear regime, AIP Conf. Proc., Volume 1299 (2010) no. 1, pp. 500-504
[54] Plasma wakefields in the quasi-nonlinear regime: experiments at ATF, AIP Conf. Proc., Volume 1507 (2012) no. 1, pp. 612-617
[55] Numerical investigation of beam-driven PWFA in quasi-nonlinear regime, Proceedings of the First European Advanced Accelerator Concepts Workshop 2013, Nucl. Instrum. Methods A, Volume 740 (2014), pp. 236-241
[56] High energy density plasma science with an ultrarelativistic electron beam, Phys. Plasmas (1994–present), Volume 9 (2002) no. 5, pp. 1845-1855
Cité par Sources :
Commentaires - Politique