In this study, a rational approach is proposed to design a device for inducing swirling flow in heat exchanger pipes, for improved efficiency in the laminar regime. First, 2D computational fluid dynamics results lead to select, among four profiles, the blade profile with the most favorable lift to drag ratio. Then, the fluid flow in the swirler made with the selected blade profile is simulated in 3D, for Reynolds numbers ranging from 50 to 1600. Based on the simulation results, an analytic approximation of the evolution of the tangential fluid velocity is proposed as a function of the Reynolds number.
Accepted:
Published online:
François Beaubert 1; Halldór Pálsson 2; Sylvain Lalot 1; Isabelle Choquet 3; Hadrien Bauduin 1
@article{CRMECA_2015__343_1_1_0, author = {Fran\c{c}ois Beaubert and Halld\'or P\'alsson and Sylvain Lalot and Isabelle Choquet and Hadrien Bauduin}, title = {Design of a device to induce swirling flow in pipes: {A} rational approach}, journal = {Comptes Rendus. M\'ecanique}, pages = {1--12}, publisher = {Elsevier}, volume = {343}, number = {1}, year = {2015}, doi = {10.1016/j.crme.2014.09.004}, language = {en}, }
TY - JOUR AU - François Beaubert AU - Halldór Pálsson AU - Sylvain Lalot AU - Isabelle Choquet AU - Hadrien Bauduin TI - Design of a device to induce swirling flow in pipes: A rational approach JO - Comptes Rendus. Mécanique PY - 2015 SP - 1 EP - 12 VL - 343 IS - 1 PB - Elsevier DO - 10.1016/j.crme.2014.09.004 LA - en ID - CRMECA_2015__343_1_1_0 ER -
%0 Journal Article %A François Beaubert %A Halldór Pálsson %A Sylvain Lalot %A Isabelle Choquet %A Hadrien Bauduin %T Design of a device to induce swirling flow in pipes: A rational approach %J Comptes Rendus. Mécanique %D 2015 %P 1-12 %V 343 %N 1 %I Elsevier %R 10.1016/j.crme.2014.09.004 %G en %F CRMECA_2015__343_1_1_0
François Beaubert; Halldór Pálsson; Sylvain Lalot; Isabelle Choquet; Hadrien Bauduin. Design of a device to induce swirling flow in pipes: A rational approach. Comptes Rendus. Mécanique, Volume 343 (2015) no. 1, pp. 1-12. doi : 10.1016/j.crme.2014.09.004. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2014.09.004/
[1] www.engr.iupui.edu/me/courses/shellandtube
[2] Numerical investigations on swirl intensity decay rate for turbulent swirling flow in a fixed pipe, Int. J. Mech. Sci., Volume 53 (2011), pp. 801-811
[3] Comparison of turbulence models in simulating swirling pipe flows, Appl. Math. Model., Volume 34 (2010) no. 10, pp. 2840-2849
[4] et al. Computational study of decaying annular vortex flow using the turbulence model, Appl. Math. Model., Volume 36 (2011) no. 10, pp. 4652-4664
[5] Estimation of the thermohydraulic efficiency of swirlers at small Reynolds numbers, J. Eng. Phys. Thermophys., Volume 82 (2009) no. 1, pp. 21-28
[6] Analytical approximate solution for decaying laminar swirling flows within a narrow annulus, Jordan J. Mech. Ind. Eng., Volume 2 (2008) no. 2, pp. 101-109
[7] A generalized relationship for swirl decay in laminar pipe flow, Sâdhana, Volume 35 (2010) no. 2, pp. 129-137
[8] Friction and heat transfer characteristics of laminar swirl flow through a circular tube fitted with regularly spaces twisted-tape elements, Int. J. Heat Mass Transf., Volume 44 (2001), pp. 4211-4223
[9] Friction and heat transfer characteristics of laminar swirl flow through the round tubes inserted with alternate clockwise and counter-clockwise twisted-tapes, Int. Commun. Heat Mass Transf., Volume 38 (2011) no. 3, pp. 348-352
[10] Experimental investigation of the swirling flow and the helical vortices induced by a twisted tape inside a circular pipe, Phys. Fluids, Volume 21 (2009), p. 037102
[11] Heat transfer augmentation in a helical-ribbed tube with double twisted tape inserts, Int. Commun. Heat Mass Transf., Volume 39 (2012), pp. 953-959
[12] Thermal performances of enhanced smooth and spiky twisted tapes for laminar and turbulent tubular flows, Int. J. Heat Mass Transf., Volume 55 (2012), pp. 7651-7667
[13] Using oscillations to enhance heat transfer for a circular cylinder, Int. J. Heat Mass Transf., Volume 49 (2006), pp. 3190-3210
[14] On heat transfer enhancement in swirl pipe flows, Int. J. Heat Mass Transf., Volume 47 (2004), pp. 2379-2393
[15] Mechanisms of heat transfer enhancement and slow decay of swirl in tubes using tangential injection, Int. J. Heat Fluid Flow, Volume 16 (1995), pp. 78-87
[16] Modelling of strongly swirling flows in a complex geometry using unstructured meshes, Int. J. Numer. Methods Heat Fluid Flow, Volume 16 (2006) no. 8, pp. 910-926
[17] Heat transfer and friction characteristics in decaying swirl flow generated by different radial guide vane swirl generators, Energy Convers. Manag., Volume 44 (2003), pp. 283-300
[18] Turbulent convection in round tube equipped with propeller type swirl generators, Int. Commun. Heat Mass Transf., Volume 36 (2009), pp. 357-364
[19] Heat transfer augmentation by swirl generators inserted into a tube with constant heat flux, Int. Commun. Heat Mass Transf., Volume 36 (2009), pp. 865-871
[20] Profils, grilles d'aubes et machines axiales, Arts et Métiers ParisTech, November 2008 www.lemfi.eu/activites/cours/cours_en_ligne/cours_rey_2_TOMEII.pdf (available at)
[21] Mechanics and Thermodynamics of Propulsion, Addison-Wesley Publishing Company, 1992 (ISBN: 0-201-14659-2)
[22] A rationalised approach to blade element design, axial flow fans, paper #2599, Sydney, Australia, 25–29 November (1968)
[23] C. Bak, P. Fuglsang, N.N. Sørensen, H.A. Madsen, W.Z. Shen, J.N. Sørensen, Airfoil characteristics for wind turbines, Risø-R-1065(EN), Risø National Laboratory, Roskilde, Denmark, March 1999.
[24] Curves and Surfaces for Computer Graphic, Springer-Verlag, 2005
[25] A tensorial approach to computational continuum mechanics using object orientated techniques, Comput. Phys., Volume 12 (1998) no. 6, pp. 620-631
[27] An Introduction to Computational Fluid Dynamics: The Finite Volume Method, Pearson Prentice Hall, 2007 (ISBN: 9780131274983)
[28] Numerical Heat Transfer and Fluid Flow, Ser. Comput. Methods Mech. Therm. Sci., Taylor & Francis, 1980 (ISBN: 0-89116-522-3)
[29] Pressure-based finite volume method for calculation of compressible gas flows, J. Comput. Phys., Volume 229 (2010), pp. 461-480
Cited by Sources:
Comments - Policy